RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2016, Volume 21, Issue 5, Pages 219–227 (Mi fpm1765)  

Two examples related to the twisted Burnside–Frobenius theory for infinitely generated groups

E. V. Troitskii

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The TBFT$_f$ conjecture, which is a modification of a conjecture by Fel'shtyn and Hill, says that if the Reidemeister number $R(\phi)$ of an automorphism $\phi$ of a (countable discrete) group $G$ is finite, then it coincides with the number of fixed points of the corresponding homeomorphism $\hat{\phi}$ of $\hat{G}_f$ (the part of the unitary dual formed by finite-dimensional representations). The study of this problem for residually finite groups has been the subject of some recent activity. We prove here that for infinitely generated residually finite groups there are positive and negative examples for this conjecture. It is detected that the finiteness properties of the number of fixed points of $\phi$ itself also differ from the finitely generated case.

Funding Agency Grant Number
Russian Science Foundation 16-11-10018


Full text: PDF file (146 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 512.547.4+517.986.66

Citation: E. V. Troitskii, “Two examples related to the twisted Burnside–Frobenius theory for infinitely generated groups”, Fundam. Prikl. Mat., 21:5 (2016), 219–227

Citation in format AMSBIB
\Bibitem{Tro16}
\by E.~V.~Troitskii
\paper Two examples related to the twisted Burnside--Frobenius theory for infinitely generated groups
\jour Fundam. Prikl. Mat.
\yr 2016
\vol 21
\issue 5
\pages 219--227
\mathnet{http://mi.mathnet.ru/fpm1765}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1765
  • http://mi.mathnet.ru/eng/fpm/v21/i5/p219

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:33
    Full text:10
    References:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019