RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2016, Volume 21, Issue 6, Pages 93–113 (Mi fpm1770)  

Refinement of Novikov–Betti numbers and of Novikov homology provided by an angle valued map

D. Burghelea

The Ohio State University, Columbus, Ohio

Abstract: To a pair $(X,f)$, $X$ compact ANR and $f\colon X\to \mathbb S^1$ a continuous angle valued map, $\kappa$ a field, and a nonnegative integer $r$, one assigns a finite configuration of complex numbers $z$ with multiplicities $\delta^f_r(z)$ and a finite configuration of free $\kappa[t^{-1}, t]$-modules $\hat \delta^f_r$ of rank $\delta^ f_r(z)$ indexed by the same numbers $z$. This is in analogy with the configuration of eigenvalues and of generalized eigenspaces of a linear operator in a finite-dimensional complex vector space. The configuration $\delta^f_r$ refines the Novikov–Betti number in dimension $r$ and the configuration $\hat \delta^f_r$ refines the Novikov homology in dimension $r$ associated with the cohomology class defined by $f$. In the case of the field $\kappa= \mathbb C$, the configuration $\hat \delta^f_r$ provides by “von-Neumann completion” of a configuration $\hat{\hat \delta}^f_r$ of mutually orthogonal closed Hilbert submodules of the $L_2$-homology of the infinite cyclic cover of $X$ determined by the map $f$, which is an $L^\infty(\mathbb S^1)$-Hilbert module.

Full text: PDF file (282 kB)
References: PDF file   HTML file
UDC: 515.142

Citation: D. Burghelea, “Refinement of Novikov–Betti numbers and of Novikov homology provided by an angle valued map”, Fundam. Prikl. Mat., 21:6 (2016), 93–113

Citation in format AMSBIB
\Bibitem{Bur16}
\by D.~Burghelea
\paper Refinement of Novikov--Betti numbers and of Novikov homology provided by an angle valued map
\jour Fundam. Prikl. Mat.
\yr 2016
\vol 21
\issue 6
\pages 93--113
\mathnet{http://mi.mathnet.ru/fpm1770}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1770
  • http://mi.mathnet.ru/eng/fpm/v21/i6/p93

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:53
    Full text:30
    References:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020