RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2016, Volume 21, Issue 6, Pages 143–164 (Mi fpm1772)  

A glimpse into continuous combinatorics of posets, polytopes, and matroids

R. T. Živaljević

Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrad

Abstract: We advocate a systematic study of continuous analogs of finite partially ordered sets, convex polytopes, oriented matroids, arrangements of subspaces, finite simplicial complexes, and other combinatorial structures. Among the illustrative examples reviewed are an Euler formula for a class of “continuous convex polytopes” (conjectured by Kalai and Wigderson), a duality result for a class of “continuous matroids,” a calculation of the Euler characteristic of ideals in the Grassmannian poset (related to a problem of G.-C. Rota), an exposition of the “homotopy complementation formula” for topological posets and its relation to the results of S. Kallel and R. Karoui about “weighted barycenter spaces”, and a conjecture of Vassiliev about simplicial resolutions of singularities. We also include an extension of the index inequality (Sarkaria's inequality) based on interpreting diagrams of spaces as continuous posets.

Full text: PDF file (252 kB)
References: PDF file   HTML file
UDC: 515.142

Citation: R. T. Živaljević, “A glimpse into continuous combinatorics of posets, polytopes, and matroids”, Fundam. Prikl. Mat., 21:6 (2016), 143–164

Citation in format AMSBIB
\Bibitem{Ziv16}
\by R.~T.~{\v Z}ivaljevi{\'c}
\paper A glimpse into continuous combinatorics of posets, polytopes, and matroids
\jour Fundam. Prikl. Mat.
\yr 2016
\vol 21
\issue 6
\pages 143--164
\mathnet{http://mi.mathnet.ru/fpm1772}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1772
  • http://mi.mathnet.ru/eng/fpm/v21/i6/p143

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:61
    Full text:38
    References:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020