Фундаментальная и прикладная математика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Историческая справка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Фундамент. и прикл. матем.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Фундамент. и прикл. матем., 2019, том 22, выпуск 4, страницы 75–100 (Mi fpm1817)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Алгебраическая геометрия над алгебраическими системами. VIII. Геометрические эквивалентности и особые классы алгебраических систем

Э. Ю. Данияроваa, А. Г. Мясниковb, В. Н. Ремесленниковa

a Институт математики им. С. Л. Соболева СО РАН
b Технологический институт Стивенса, США

Аннотация: Статья продолжает цикл работ по алгебраической геометрии над произвольными алгебраическими системами. В ней исследуются семь эквивалентностей, а именно геометрическая, универсальная геометрическая, квазиэквациональная, универсальная, элементарная эквивалентность и их комбинации, в особых классах алгебраических систем (нётеровых по уравнениям, $\mathrm{q}_\omega$-компактных, $\mathrm{u}_\omega$-компактных, эквациональных областей, эквациональных кообластей и др.). Основные вопросы: 1) какие эквивалентности внутри данного класса $\mathbf K$ совпадают, какие разнятся? 2) относительно каких эквивалентностей данный класс $\mathbf K$ инвариантен, относительно каких нет?

Ключевые слова: универсальная алгебраическая геометрия, алгебраическая система, геометрическая эквивалентность, универсальная геометрическая эквивалентность, квазиэквациональная эквивалентность, универсальная эквивалентность, элементарная эквивалентность, нётеровость по уравнениям, $\mathrm{q}_\omega$-компактность, $\mathrm{u}_\omega$-компактность, эквациональная область, эквациональная кообласть.

Финансовая поддержка Номер гранта
Российский научный фонд 17-11-01117
Результаты поддержаны грантом РНФ (проект № 17-11-01117).


Полный текст: PDF файл (342 kB)
Список литературы: PDF файл   HTML файл
Тип публикации: Статья
УДК: 510.67+512.71

Образец цитирования: Э. Ю. Даниярова, А. Г. Мясников, В. Н. Ремесленников, “Алгебраическая геометрия над алгебраическими системами. VIII. Геометрические эквивалентности и особые классы алгебраических систем”, Фундамент. и прикл. матем., 22:4 (2019), 75–100

Цитирование в формате AMSBIB
\RBibitem{DanMyaRem19}
\by Э.~Ю.~Даниярова, А.~Г.~Мясников, В.~Н.~Ремесленников
\paper Алгебраическая геометрия над алгебраическими системами. VIII. Геометрические эквивалентности и особые классы алгебраических систем
\jour Фундамент. и прикл. матем.
\yr 2019
\vol 22
\issue 4
\pages 75--100
\mathnet{http://mi.mathnet.ru/fpm1817}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/fpm1817
  • http://mi.mathnet.ru/rus/fpm/v22/i4/p75

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Цикл статей

    Эта публикация цитируется в следующих статьяx:
    1. А. Н. Шевляков, “Об элементарной и геометрической эквивалентности эквациональных кообластей”, Фундамент. и прикл. матем., 22:4 (2019), 229–238  mathnet
  • Фундаментальная и прикладная математика
    Просмотров:
    Эта страница:176
    Полный текст:87
    Литература:8
     
    Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021