RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2019, Volume 22, Issue 4, Pages 167–188 (Mi fpm1823)  

The group of quotients of the semigroup of invertible nonnegative matrices over local rings

V. V. Nemiro

Lomonosov Moscow State University

Abstract: In this paper, we prove that for a linearly ordered local ring $R$ with $1/2$ the group of quotients of the semigroup of invertible nonnegative matrices $\mathrm G_n(R)$ for $n \geq 3$ coincides with the group $\mathrm{GL}_n(R)$.

Full text: PDF file (215 kB)
References: PDF file   HTML file
UDC: 512.534.7+512.555

Citation: V. V. Nemiro, “The group of quotients of the semigroup of invertible nonnegative matrices over local rings”, Fundam. Prikl. Mat., 22:4 (2019), 167–188

Citation in format AMSBIB
\Bibitem{Nem19}
\by V.~V.~Nemiro
\paper The group of quotients of the semigroup of invertible nonnegative matrices over local rings
\jour Fundam. Prikl. Mat.
\yr 2019
\vol 22
\issue 4
\pages 167--188
\mathnet{http://mi.mathnet.ru/fpm1823}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1823
  • http://mi.mathnet.ru/eng/fpm/v22/i4/p167

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:12
    Full text:4
    References:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020