RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2019, Volume 22, Issue 6, Pages 123–150 (Mi fpm1856)  

Liouville foliation of topological billiards in the Minkowski plane

E. E. Karginova

Lomonosov Moscow State University

Abstract: In the paper, we give the Liouville classification of five interesting cases of topological billiards glued from two flat billiards bounded by arcs of confocal quadrics in the Minkowski plane. For each billiard, we calculate the marked Fomenko–Zieschang molecule, in other words the invariant of an integrable Hamiltonian system that completely determines the type of its Liouville foliation.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation НШ-6399.2018.1


Full text: PDF file (2141 kB)
UDC: 517.938.5

Citation: E. E. Karginova, “Liouville foliation of topological billiards in the Minkowski plane”, Fundam. Prikl. Mat., 22:6 (2019), 123–150

Citation in format AMSBIB
\Bibitem{Kar19}
\by E.~E.~Karginova
\paper Liouville foliation of topological billiards in the Minkowski plane
\jour Fundam. Prikl. Mat.
\yr 2019
\vol 22
\issue 6
\pages 123--150
\mathnet{http://mi.mathnet.ru/fpm1856}


Linking options:
  • http://mi.mathnet.ru/eng/fpm1856
  • http://mi.mathnet.ru/eng/fpm/v22/i6/p123

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:13
    Full text:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020