|
This article is cited in 5 scientific papers (total in 5 papers)
Lie type groups over PI-rings
I. Z. Golubchik Bashkir State Pedagogical University
Abstract:
For Lie type groups over PI-rings generalisation of the results on structure of subgroups of Chevalley groups over commutative rings invariant under the elementary subgroup is given.
Full text:
PDF file (1107 kB)
Bibliographic databases:
UDC:
512.542.55 Received: 01.12.1995
Citation:
I. Z. Golubchik, “Lie type groups over PI-rings”, Fundam. Prikl. Mat., 3:2 (1997), 399–424
Citation in format AMSBIB
\Bibitem{Gol97}
\by I.~Z.~Golubchik
\paper Lie type groups over PI-rings
\jour Fundam. Prikl. Mat.
\yr 1997
\vol 3
\issue 2
\pages 399--424
\mathnet{http://mi.mathnet.ru/fpm221}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1793452}
\zmath{https://zbmath.org/?q=an:0903.20026}
Linking options:
http://mi.mathnet.ru/eng/fpm221 http://mi.mathnet.ru/eng/fpm/v3/i2/p399
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Golubkov, AY, “The prime radical of the special Lie algebras and the elementary Chevalley groups”, Communications in Algebra, 32:5 (2004), 1649
-
N. A. Vavilov, A. K. Stavrova, “Basic reductions for the description of normal subgroups”, J. Math. Sci. (N. Y.), 151:3 (2008), 2949–2960
-
Klyachko A.A., “Automorphisms and isomorphisms of Chevalley groups and algebras”, J Algebra, 324:10 (2010), 2608–2619
-
N. A. Vavilov, A. V. Stepanov, “Linear groups over general rings. I. Generalities”, J. Math. Sci. (N. Y.), 188:5 (2013), 490–550
-
I. Z. Golubchik, A. I. Murseeva, “Homomorphisms of Lie groups”, J. Math. Sci., 233:5 (2018), 659–665
|
Number of views: |
This page: | 146 | Full text: | 72 | First page: | 2 |
|