RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 1997, Volume 3, Issue 3, Pages 801–808 (Mi fpm254)  

This article is cited in 8 scientific papers (total in 8 papers)

Radon problem for regular measures on an arbitrary Hausdorf space

V. K. Zakharova, A. V. Mikhalevb

a St. Petersburg State University of Technology and Design
b M. V. Lomonosov Moscow State University

Abstract: An isomorphic linear version of the general Radon representation is given for arbitrary Hausdorf spaces.

Full text: PDF file (392 kB)

Bibliographic databases:
UDC: 517.981.1+517.518.1+517.982.3
Received: 01.12.1996

Citation: V. K. Zakharov, A. V. Mikhalev, “Radon problem for regular measures on an arbitrary Hausdorf space”, Fundam. Prikl. Mat., 3:3 (1997), 801–808

Citation in format AMSBIB
\Bibitem{ZakMik97}
\by V.~K.~Zakharov, A.~V.~Mikhalev
\paper Radon problem for regular measures on an arbitrary Hausdorf space
\jour Fundam. Prikl. Mat.
\yr 1997
\vol 3
\issue 3
\pages 801--808
\mathnet{http://mi.mathnet.ru/fpm254}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1794142}
\zmath{https://zbmath.org/?q=an:0937.28012}


Linking options:
  • http://mi.mathnet.ru/eng/fpm254
  • http://mi.mathnet.ru/eng/fpm/v3/i3/p801

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Zakharov V.K., Mikhalev A.V., “The integral representation problem for radon measures on a Hausdorff space”, Doklady Akademii Nauk, 360:1 (1998), 13–15  mathnet  mathscinet  zmath  isi
    2. V. K. Zakharov, A. V. Mikhalev, “The problem of general Radon representation for an arbitrary Hausdorff space”, Izv. Math., 63:5 (1999), 881–921  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. Berti, P, “Integral representation of linear functionals on spaces of unbounded functions”, Proceedings of the American Mathematical Society, 128:11 (2000), 3251  crossref  mathscinet  zmath  isi
    4. V. K. Zakharov, A. V. Mikhalev, “The problem of general Radon representation for an arbitrary Hausdorff space. II”, Izv. Math., 66:6 (2002), 1087–1101  mathnet  crossref  crossref  mathscinet  zmath
    5. V. K. Zakharov, “The Riesz–Radon Problem of Characterizing Integrals and the Weak Compactness of Radon Measures”, Proc. Steklov Inst. Math., 248 (2005), 101–110  mathnet  mathscinet  zmath
    6. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “The Riesz–Radon–Fréchet problem of characterization of integrals”, Russian Math. Surveys, 65:4 (2010), 741–765  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “Characterization of Radon integrals as linear functionals”, J. Math. Sci., 185:2 (2012), 233–281  mathnet  crossref  mathscinet
    8. V. K. Zakharov, A. V. Mikhalev, T. V. Rodionov, “Descriptive spaces and proper classes of functions”, J. Math. Sci., 213:2 (2016), 163–200  mathnet  crossref  mathscinet
  • Фундаментальная и прикладная математика
    Number of views:
    This page:221
    Full text:89
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020