RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 1998, Volume 4, Issue 2, Pages 479–492 (Mi fpm305)  

This article is cited in 15 scientific papers (total in 15 papers)

Asymptotical behaviour for some functionals of positively and negatively dependent random fields

A. V. Bulinskia, E. Shabanovichb

a M. V. Lomonosov Moscow State University
b University of Montenegro

Abstract: Using Stein–Goetze–Barbour techniques we estimate the proximity of values of a functional of certain class taken respectively on processes of weighted partial sums type and on appropriate Gaussian processes. The former processes arise from random fields on $\mathbb Z^d$ which are either weakly associated or negatively dependent.

Full text: PDF file (587 kB)

Bibliographic databases:
UDC: 519.21
Received: 01.06.1997

Citation: A. V. Bulinski, E. Shabanovich, “Asymptotical behaviour for some functionals of positively and negatively dependent random fields”, Fundam. Prikl. Mat., 4:2 (1998), 479–492

Citation in format AMSBIB
\Bibitem{BulSha98}
\by A.~V.~Bulinski, E.~Shabanovich
\paper Asymptotical behaviour for some functionals of positively and negatively dependent random fields
\jour Fundam. Prikl. Mat.
\yr 1998
\vol 4
\issue 2
\pages 479--492
\mathnet{http://mi.mathnet.ru/fpm305}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1801168}
\zmath{https://zbmath.org/?q=an:0968.60044}


Linking options:
  • http://mi.mathnet.ru/eng/fpm305
  • http://mi.mathnet.ru/eng/fpm/v4/i2/p479

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. A. Vronskii, “Refinement of the almost sure central limit theorem for associated processes”, Math. Notes, 68:4 (2000), 444–451  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. Bulinski, A, “Normal approximation for quasi-associated random fields”, Statistics & Probability Letters, 54:2 (2001), 215  crossref  mathscinet  zmath  isi
    3. A. P. Shashkin, “Maximal Inequality for Weakly Dependent Random Fields”, Math. Notes, 75:5 (2004), 717–725  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. A. V. Bulinski, “Statistical Version of the Central Limit Theorem for Vector-Valued Random Fields”, Math. Notes, 76:4 (2004), 455–464  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. Bulinski, AV, “Strong invariance principle for dependent multi-indexed random variables”, Doklady Mathematics, 72:1 (2005), 503  zmath  isi  elib
    6. A. P. Shashkin, “The law of the iterated logarithm for an associated random field”, Russian Math. Surveys, 61:2 (2006), 359–361  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. N. Yu. Kryzhanovskaya, “Moment Inequality for Sums of Multi-Indexed Dependent Random Variables”, Math. Notes, 83:6 (2008), 770–782  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. Shashkin, A, “A strong invariance principle for positively or negatively associated random fields”, Statistics & Probability Letters, 78:14 (2008), 2121  crossref  mathscinet  zmath  isi
    9. Bulinski A., “Central Limit Theorem for Random Fields and Applications”, Advances in Data Analysis - Theory and Applications to Reliability and Inference, Data Mining, Bioinformatics, Lifetime Data, and Neural Networks, Statistics for Industry and Technology, 2010, 141–150  mathscinet  isi
    10. Shashkin A., “A Berry-Esseen Type Estimate for Dependent Systems on Transitive Graphs”, Advances in Data Analysis - Theory and Applications to Reliability and Inference, Data Mining, Bioinformatics, Lifetime Data, and Neural Networks, Statistics for Industry and Technology, 2010, 151–156  mathscinet  isi
    11. Bulinski A., Spodarev E., Timmermann F., “Central limit theorems for the excursion set volumes of weakly dependent random fields”, Bernoulli, 18:1 (2012), 100–118  crossref  mathscinet  zmath  isi  elib
    12. V. P. Demichev, “Functional central limit theorem for excursion set volumes of quasi-associated random fields”, J. Math. Sci. (N. Y.), 204:1 (2015), 69–77  mathnet  crossref  mathscinet
    13. V. P. Demichev, “A Central Limit Theorem for Integrals with Respect to Random Measures”, Math. Notes, 95:2 (2014), 193–203  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    14. Hadjila T., Ahmed A.S., “Estimation and Simulation of Conditional Hazard Function in the Quasi-Associated Framework When the Observations Are Linked Via a Functional Single-Index Structure”, Commun. Stat.-Theory Methods, 47:4 (2018), 816–838  crossref  mathscinet  zmath  isi  scopus
    15. Poinas A., Delyon B., Lavancier F., “Mixing Properties and Central Limit Theorem For Associated Point Processes”, Bernoulli, 25:3 (2019), 1724–1754  crossref  mathscinet  zmath  isi  scopus
  • Фундаментальная и прикладная математика
    Number of views:
    This page:338
    Full text:158
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020