RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 1998, Volume 4, Issue 2, Pages 751–755 (Mi fpm309)  

Short communications

Algebraic independence of values of E-functions, satisfying arbitrary algebraic equations over $\mathbb C(z)$

V. A. Gorelov

Moscow Power Engineering Institute (Technical University)

Abstract: An effective analog of Shidlovskii's third theorem about algebraic independence of values of E-functions, satisfying system of linear differential equations has been obtained.

Full text: PDF file (223 kB)

Bibliographic databases:
UDC: 511.36
Received: 01.03.1996

Citation: V. A. Gorelov, “Algebraic independence of values of E-functions, satisfying arbitrary algebraic equations over $\mathbb C(z)$”, Fundam. Prikl. Mat., 4:2 (1998), 751–755

Citation in format AMSBIB
\Bibitem{Gor98}
\by V.~A.~Gorelov
\paper Algebraic independence of values of E-functions, satisfying arbitrary algebraic equations over $\mathbb C(z)$
\jour Fundam. Prikl. Mat.
\yr 1998
\vol 4
\issue 2
\pages 751--755
\mathnet{http://mi.mathnet.ru/fpm309}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1801187}
\zmath{https://zbmath.org/?q=an:0990.11050}


Linking options:
  • http://mi.mathnet.ru/eng/fpm309
  • http://mi.mathnet.ru/eng/fpm/v4/i2/p751

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:150
    Full text:73
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020