RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 1998, Volume 4, Issue 2, Pages 669–689 (Mi fpm326)  

This article is cited in 9 scientific papers (total in 9 papers)

Representations for Appell's series $F_2(x,y)$ to the vicinity of the singular point $(1,1)$ and near the boundary of its domain of convergence

V. F. Tarasov

Bryansk State Technical University

Abstract: Exact analytical representations for Appell's series $F_2(x,y)$ to the vicinity of the singular point $(1,1)$ and the boundary of its domain of convergence are given. It is shown, that Appell's functions $F_2(1,1)$ and $F_3(1,1)$ have the property of mirror-like symmetry with respect to the center $j_0=-1/2$ under the change $j\mapsto-j-1$, $j\in\mathbb{Z}$, and they correlate between each other.

Full text: PDF file (662 kB)

Bibliographic databases:
UDC: 517.588
Received: 01.04.1996

Citation: V. F. Tarasov, “Representations for Appell's series $F_2(x,y)$ to the vicinity of the singular point $(1,1)$ and near the boundary of its domain of convergence”, Fundam. Prikl. Mat., 4:2 (1998), 669–689

Citation in format AMSBIB
\Bibitem{Tar98}
\by V.~F.~Tarasov
\paper Representations for Appell's series $F_2(x,y)$ to the vicinity of the singular point $(1,1)$ and near the boundary of its domain of convergence
\jour Fundam. Prikl. Mat.
\yr 1998
\vol 4
\issue 2
\pages 669--689
\mathnet{http://mi.mathnet.ru/fpm326}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1801181}
\zmath{https://zbmath.org/?q=an:0976.33010}


Linking options:
  • http://mi.mathnet.ru/eng/fpm326
  • http://mi.mathnet.ru/eng/fpm/v4/i2/p669

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Tarasov V.F., “W. Gordon's integral (1929) and its representations by means of Appellis functions F-2, F-1 and F-3”, Modern Physics Letters B, 16:23–24 (2002), 895–899  crossref  mathscinet  zmath  adsnasa  isi
    2. Tarasov V.F., “W. Gordon's integral (1929) and its representations by means of Appell's functions F-2, F-1, and F-3”, Journal of Mathematical Physics, 44:3 (2003), 1449–1452  crossref  mathscinet  zmath  adsnasa  isi
    3. Tarasov V.F., “The Thomas-Fermi-gombas atom models in which the electrons are grouped into n- and nl-shells and a calculation of the atomic form factor”, International Journal of Modern Physics B, 18:3 (2004), 409–419  crossref  zmath  adsnasa  isi
    4. Tarasov V.F., “The Heun-Schrodinger radial equation for DH-atoms”, Modern Physics Letters B, 19:19–20 (2005), 981–989  crossref  adsnasa  isi  elib
    5. Shpot M.A., “A massive Feynman integral and some reduction relations for Appell functions”, Journal of Mathematical Physics, 48:12 (2007), 123512  crossref  mathscinet  zmath  adsnasa  isi
    6. Tarasov V.F., “Exact analytical expressions and numerical values of diagonal matrix elements {$\langle r^k\rangle_{nlj}, \langle g\vert r^k\vert g\rangle, \langle g\vert r^k\vert f\rangle$} and {$\langle f\vert r^k\vert f\rangle$} with {D}irac's radial functions {$g(r)$} and {$f(r)$} of {H}-like atoms and the symmetry of {A}ppell's function {$F_2(1,1)$}”, International Journal of Modern Physics B, 22:29 (2008), 5175–5205  crossref  mathscinet  adsnasa  isi
    7. Tarasov V.F., “Multipole matrix elements $\langle nl|r^{\beta}| n' l' \rangle_{\nu}$ for H-like atoms, their asymptotics and applications $(AS   \beta = 1, n \leq 4,  n' \leq 10)$”, International Journal of Modern Physics B, 23:8 (2009), 2041–2067  crossref  zmath  adsnasa  isi
    8. Tarasov V.F., “Exact analytical expressions and numerical values of Slater's and Marvin's radial integrals of the type $R_k^{(\mu, \nu)} (11,21;12,22), F_k^{(\mu, \nu)} (1,2)$ and $G_k^{(\mu, \nu)} (1;2)$ with the kernel $r_<^{k+\mu}/r_>^{k+\mu}$ (as $k \geq 0, \mu \geq 0$ is an even and $\nu - \mu = 1,3,5, …$) for arbitrary $nl$-states of H-like atoms and $Z \leq 137$ by means of Appell's $F_2 (x,y)$ and Gauss's $_2F_1 (z)$ functions”, Internat J Modern Phys B, 24:27 (2010), 5387–5407  crossref  zmath  adsnasa  isi  elib
    9. Tarasov V.F., “New properties of the {P}. {E}. {A}ppell hypergeometric series {$F_2(\alpha;\beta,\beta';\gamma,\gamma';x,y)$} to the vicinity of the singular point {$(1,1)$} and near the boundary of its domain of convergence {$D_2\colon\vert x\vert +\vert y\vert <1$}”, Internat J Modern Phys B, 24:22 (2010), 4181–4202  crossref  mathscinet  zmath  adsnasa  isi  elib
  • Фундаментальная и прикладная математика
    Number of views:
    This page:194
    Full text:88
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019