RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 1998, Volume 4, Issue 2, Pages 791–794 (Mi fpm328)  

Short communications

Ideals of distributive rings

A. A. Tuganbaev

Moscow Power Engineering Institute (Technical University)

Abstract: Let $P$ be a prime ideal of a distributive ring $A$, and let $T$ be the set of all elements $t\in A$ such that $t+P$ is a regular element of the ring $A/P$. Then for any elements $a\in A$, $t\in T$ there exist elements $b_1,b_2\in A$, $u_1,u_2\in T$ such that $au_1=tb_1$, $u_2a=b_2t$. If either all square-zero elements of $A$ are central or $A$ satisfies the maximum conditions for right and left annihilators, then the classical two-sided localization $A_P$ exists and is a distributive ring.

Full text: PDF file (208 kB)

Bibliographic databases:
UDC: 512.55
Received: 01.03.1996

Citation: A. A. Tuganbaev, “Ideals of distributive rings”, Fundam. Prikl. Mat., 4:2 (1998), 791–794

Citation in format AMSBIB
\Bibitem{Tug98}
\by A.~A.~Tuganbaev
\paper Ideals of distributive rings
\jour Fundam. Prikl. Mat.
\yr 1998
\vol 4
\issue 2
\pages 791--794
\mathnet{http://mi.mathnet.ru/fpm328}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1801194}
\zmath{https://zbmath.org/?q=an:0963.16001}


Linking options:
  • http://mi.mathnet.ru/eng/fpm328
  • http://mi.mathnet.ru/eng/fpm/v4/i2/p791

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:185
    Full text:82
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020