RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 1998, Volume 4, Issue 4, Pages 1423–1426 (Mi fpm362)  

Short communications

On the best local nonglobal rational approximation in the space $H_2$

M. A. Nazarenko

M. V. Lomonosov Moscow State University

Abstract: For any natural number $k$ the function from the Hardy space $H_2$ is found that its rational approximation of $(k,1)$ degree with pole in $1/\sqrt{2}$ gives the best local nonglobal approximation in the set of all rational functions of $(k,1)$ degree.

Full text: PDF file (141 kB)

Bibliographic databases:
UDC: 517.53
Received: 01.04.1996

Citation: M. A. Nazarenko, “On the best local nonglobal rational approximation in the space $H_2$”, Fundam. Prikl. Mat., 4:4 (1998), 1423–1426

Citation in format AMSBIB
\Bibitem{Naz98}
\by M.~A.~Nazarenko
\paper On the~best local nonglobal rational approximation in the~space~$H_2$
\jour Fundam. Prikl. Mat.
\yr 1998
\vol 4
\issue 4
\pages 1423--1426
\mathnet{http://mi.mathnet.ru/fpm362}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1798515}
\zmath{https://zbmath.org/?q=an:0948.41007}


Linking options:
  • http://mi.mathnet.ru/eng/fpm362
  • http://mi.mathnet.ru/eng/fpm/v4/i4/p1423

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:142
    Full text:50
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020