|
This article is cited in 29 scientific papers (total in 29 papers)
On non-Spechtian varieties
A. Ya. Belov House of scientific and technical work of youth
Abstract:
This article is devoted to construction of infinitely based series of identities. Such counterexamples in Specht problem are built in any positive characteristics. The main result is the following:
Theorem. Let $F$ be any field of characteristic $p$, $q=p^s$, $s>1$. Then the polynomials $R_n$:
$$
R_n=[[E,T],T]\prod_{i=1}^n Q(x_i,y_i) ([T,[T,F]][[E,T],T])^{q-1}[T,[T,F]],
$$
where $Q(x,y)=x^{p-1}y^{p-1}[x,y]$, generate an infinitely based variety.
Full text:
PDF file (1053 kB)
Bibliographic databases:
UDC:
512.55 Received: 01.11.1998
Citation:
A. Ya. Belov, “On non-Spechtian varieties”, Fundam. Prikl. Mat., 5:1 (1999), 47–66
Citation in format AMSBIB
\Bibitem{Bel99}
\by A.~Ya.~Belov
\paper On non-Spechtian varieties
\jour Fundam. Prikl. Mat.
\yr 1999
\vol 5
\issue 1
\pages 47--66
\mathnet{http://mi.mathnet.ru/fpm365}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1799544}
\zmath{https://zbmath.org/?q=an:0964.16024}
Linking options:
http://mi.mathnet.ru/eng/fpm365 http://mi.mathnet.ru/eng/fpm/v5/i1/p47
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. V. Shchigolev, “The finite basis property of $T$-spaces over fields of characteristic zero”, Izv. Math., 65:5 (2001), 1041–1071
-
Giambruno, A, “On the identities of the Grassmann algebras in characteristic p > 0”, Israel Journal of Mathematics, 122 (2001), 305
-
Gupta, CK, “A simple example of a non-finitely based system of polynomial identities”, Communications in Algebra, 30:10 (2002), 4851
-
Gupta, CK, “A non-finitely based system of polynomial identities which contains the identity x(6)=0”, Quarterly Journal of Mathematics, 53 (2002), 173
-
A. Ya. Belov, “No associative $PI$-algebra coincides with its commutant”, Siberian Math. J., 44:6 (2003), 969–980
-
Gupta, CK, “The finite basis question for varieties of groups - Some recent results”, Illinois Journal of Mathematics, 47:1–2 (2003), 273
-
A. V. Grishin, “Model algebras, multiplicities, and representability indices of varieties of associative algebras”, Sb. Math., 195:1 (2004), 1–18
-
Drensky V., “Polynomial identity rings - Part A - Combinatorial aspects in PI-rings”, Polynomial Identity Rings, Advanced Courses in Mathematics CRM Barcelona, 2004, 1
-
E. A. Kireeva, A. N. Krasilnikov, “On Some Extremal Varieties of Associative Algebras”, Math. Notes, 78:4 (2005), 503–517
-
Crvenkovic, S, “A locally finite variety of rings with an undecidable equational theory”, Quarterly Journal of Mathematics, 57 (2006), 297
-
Drensky, V, “Grobner bases of ideals invariant under endomorphisms”, Journal of Symbolic Computation, 41:7 (2006), 835
-
A. Ya. Belov, “On Rings Asymptotically Close to Associative Rings”, Siberian Adv. Math., 17:4 (2007), 227–267
-
E. A. Kireeva, “Limit T-spaces”, J. Math. Sci., 152:4 (2008), 540–557
-
L. M. Tsybulya, “Theorems on equalization and monomiality in a relatively free Grassmann algebra”, J. Math. Sci., 163:6 (2009), 759–773
-
A. V. Grishin, L. M. Tsybulya, “On the multiplicative and $T$-space structure of the relatively free Grassmann algebra”, Sb. Math., 200:9 (2009), 1299–1338
-
Aladova E.V., Krasilnikov A.N., “Polynomial Identities in Nil-Algebras”, Transactions of the American Mathematical Society, 361:11 (2009), 5629–5646
-
A. V. Grishin, L. M. Tsybulya, “On the structure of a relatively free Grassmann algebra”, J. Math. Sci., 171:2 (2010), 149–212
-
A. Ya. Belov, “The local finite basis property and local representability of varieties of associative rings”, Izv. Math., 74:1 (2010), 1–126
-
Silkin N., “On Finite Basis Property for Joins of Varieties of Associative Rings”, Comm Algebra, 38:9 (2010), 3187–3205
-
Klyachko A.A., Menshova E.V., “The identities of additive binary arithmetics”, Electron J Combin, 19:1 (2012), P40
-
Goncalves D.J., Krasilnikov A., Sviridova I., “Limit T-Subspaces and the Central Polynomials in N Variables of the Grassmann Algebra”, J. Algebra, 371 (2012), 156–174
-
Edmond W. H. Lee, “Maximal Specht varieties of monoids”, Mosc. Math. J., 12:4 (2012), 787–802
-
G. S. Deryabina, A. N. Krasilnikov, “A Non-Finitely-Based Variety of Centrally Metabelian Pointed Groups”, Math. Notes, 95:5 (2014), 743–746
-
Concalves D.J., Krasilnikov A., Sviridova I., “Limit T-Subalgebras in Free Associative Algebras”, J. Algebra, 412 (2014), 264–280
-
M. I. Kharitonov, “Otsenki, svyazannye s teoremoi Shirshova o vysote”, Chebyshevskii sb., 15:4 (2014), 55–123
-
Deryabina G., Krasilnikov A., “the Subalgebra of Graded Central Polynomials of An Associative Algebra”, J. Algebra, 425 (2015), 313–323
-
M. I. Kharitonov, “The estimate of the number of permutationally-ordered sets”, Moscow University Mathematics Bulletin, 70:3 (2015), 125–129
-
Di Vincenzo O.M., Koshlukov P., Tomaz da Silva V.R., “On Z(P)-Graded Identities and Cocharacters of the Grassmann Algebra”, Commun. Algebr., 45:1 (2017), 343–356
-
Kireeva E., Shchigolev V., “The Nilpotence Degree of Quantum Lie Nilpotent Algebras”, Int. J. Algebr. Comput., 28:6 (2018), 1119–1128
|
Number of views: |
This page: | 326 | Full text: | 87 | First page: | 2 |
|