RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 1999, Volume 5, Issue 1, Pages 85–95 (Mi fpm369)  

This article is cited in 5 scientific papers (total in 5 papers)

Homology of the Shafarevich complex and noncommutative complete intersections

E. S. Golod

M. V. Lomonosov Moscow State University

Abstract: General properties of the Shafarevich complex construction are studied. They are used to provide a proof of the theorem which characterizes non-commutative complete intersections in terms of the homology algebras of Shafarevich complexes. This theorem is a non-commutative analogue of (a generalized version of) the Tate–Assmus theorem on commutative complete intersections.

Full text: PDF file (551 kB)

Bibliographic databases:
UDC: 512.664.2
Received: 01.04.1998

Citation: E. S. Golod, “Homology of the Shafarevich complex and noncommutative complete intersections”, Fundam. Prikl. Mat., 5:1 (1999), 85–95

Citation in format AMSBIB
\Bibitem{Gol99}
\by E.~S.~Golod
\paper Homology of the~Shafarevich complex and noncommutative complete intersections
\jour Fundam. Prikl. Mat.
\yr 1999
\vol 5
\issue 1
\pages 85--95
\mathnet{http://mi.mathnet.ru/fpm369}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1800120}
\zmath{https://zbmath.org/?q=an:0962.16006}


Linking options:
  • http://mi.mathnet.ru/eng/fpm369
  • http://mi.mathnet.ru/eng/fpm/v5/i1/p85

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. I. Piontkovskii, “On graded algebras of global dimension 3”, Izv. Math., 65:3 (2001), 557–568  mathnet  crossref  crossref  mathscinet  zmath  elib
    2. D. I. Piontkovskii, “On differential graded Lie algebras”, Russian Math. Surveys, 58:1 (2003), 189–190  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Etingof, P, “Noncommutative complete intersections and matrix integrals”, Pure and Applied Mathematics Quarterly, 3:1 (2007), 107  crossref  mathscinet  zmath  isi
    4. Piontkovski, D, “Coherent algebras and noncommutative projective lines”, Journal of Algebra, 319:8 (2008), 3280  crossref  mathscinet  zmath  isi
    5. Berest Yu., Felder G., Ramadoss A., “Derived Representation Schemes and Noncommutative Geometry”, Expository Lectures on Representation Theory, Contemporary Mathematics, 607, eds. Igusa K., Martsinkovsky A., Todorov G., Amer Mathematical Soc, 2014, 113–162  crossref  mathscinet  zmath  isi
  • Фундаментальная и прикладная математика
    Number of views:
    This page:262
    Full text:104
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019