|
This article is cited in 3 scientific papers (total in 3 papers)
On the homology algebra of a Shafarevich complex over free algebras
E. S. Golod M. V. Lomonosov Moscow State University
Abstract:
The theorem is proved that asserts that the homology algebra of a Shafarevich complex over free associative algebras is generated by degree one and zero elements.
Full text:
PDF file (218 kB)
Bibliographic databases:
UDC:
512.664.2 Received: 01.04.1998
Citation:
E. S. Golod, “On the homology algebra of a Shafarevich complex over free algebras”, Fundam. Prikl. Mat., 5:1 (1999), 97–100
Citation in format AMSBIB
\Bibitem{Gol99}
\by E.~S.~Golod
\paper On the~homology algebra of a~Shafarevich complex over free algebras
\jour Fundam. Prikl. Mat.
\yr 1999
\vol 5
\issue 1
\pages 97--100
\mathnet{http://mi.mathnet.ru/fpm370}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1799542}
\zmath{https://zbmath.org/?q=an:0963.16007}
Linking options:
http://mi.mathnet.ru/eng/fpm370 http://mi.mathnet.ru/eng/fpm/v5/i1/p97
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
D. I. Piontkovskii, “On graded algebras of global dimension 3”, Izv. Math., 65:3 (2001), 557–568
-
D. I. Piontkovskii, “On differential graded Lie algebras”, Russian Math. Surveys, 58:1 (2003), 189–190
-
Etingof, P, “Noncommutative complete intersections and matrix integrals”, Pure and Applied Mathematics Quarterly, 3:1 (2007), 107
|
Number of views: |
This page: | 240 | Full text: | 77 | First page: | 2 |
|