RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 1995, Volume 1, Issue 1, Pages 71–79 (Mi fpm43)  

This article is cited in 3 scientific papers (total in 3 papers)

Inverse problems of symbolic dimamics

A. Ya. Belov, G. V. Kondakov

House of scientific and technical work of youth

Abstract: Let $P(n)$ be a polynomial with irrational greatest coefficient. Let also a superword $W$ $(W=(w_n),n\in\mathbb N)$ be the sequence of first binary digits of $\{P(n)\}$, i.e. $w_n=[2\{P(n)\}]$, and $T(k)$ be the number of different subwords of $W$ whose length is equal to $k$. The main result of the paper is the following:
Theorem 1.1. For any $n$ there exists a polynomial $Q(k)$ such that if $deg(P)=n$, then $T(k)=Q(k)$ for all sufficiently large $k$.

Full text: PDF file (3616 kB)
References: PDF file   HTML file

Bibliographic databases:
Received: 01.01.1995

Citation: A. Ya. Belov, G. V. Kondakov, “Inverse problems of symbolic dimamics”, Fundam. Prikl. Mat., 1:1 (1995), 71–79

Citation in format AMSBIB
\Bibitem{BelKon95}
\by A.~Ya.~Belov, G.~V.~Kondakov
\paper Inverse problems of symbolic dimamics
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 1
\pages 71--79
\mathnet{http://mi.mathnet.ru/fpm43}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1789352}
\zmath{https://zbmath.org/?q=an:0868.58023}


Linking options:
  • http://mi.mathnet.ru/eng/fpm43
  • http://mi.mathnet.ru/eng/fpm/v1/i1/p71

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. L. Chernyatiev, “Balanced words and dynamical systems”, J. Math. Sci., 156:2 (2009), 351–358  mathnet  crossref  mathscinet  zmath
    2. A. Ya. Belov, A. L. Chernyatiev, “Words with low complexity and interval exchange transformations”, Russian Math. Surveys, 63:1 (2008), 158–160  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Kanel-Belov A.Ya., Chernyat'ev A.L., “Describing the Set of Words Generated by Interval Exchange Transformation”, Comm Algebra, 38:7 (2010), 2588–2605  crossref  mathscinet  zmath  isi  elib
  • Фундаментальная и прикладная математика
    Number of views:
    This page:394
    Full text:112
    References:42
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020