RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 1995, Volume 1, Issue 1, Pages 301–304 (Mi fpm44)  

This article is cited in 1 scientific paper (total in 1 paper)

Short communications

Ring properties of endomorphism rings of modules

G. M. Brodskii, A. G. Grigoryan

P. G. Demidov Yaroslavl State University

Abstract: A certain method of studying ring properties of endomorphism rings of modules is justified. As an example of its applications the equivalence of the following conditions is proved: 1) the right annihilator of every proper finitely generated (principal) left ideal in any endomorphism ring of an injective right $R$-module contains a nonzero idempotent; 2) the ring $R$ is a semiartinian right $V$-ring.

Full text: PDF file (192 kB)
References: PDF file   HTML file

Bibliographic databases:
Received: 01.02.1994

Citation: G. M. Brodskii, A. G. Grigoryan, “Ring properties of endomorphism rings of modules”, Fundam. Prikl. Mat., 1:1 (1995), 301–304

Citation in format AMSBIB
\Bibitem{BroGri95}
\by G.~M.~Brodskii, A.~G.~Grigoryan
\paper Ring properties of endomorphism rings of modules
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 1
\pages 301--304
\mathnet{http://mi.mathnet.ru/fpm44}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1789367}
\zmath{https://zbmath.org/?q=an:0866.16019}


Linking options:
  • http://mi.mathnet.ru/eng/fpm44
  • http://mi.mathnet.ru/eng/fpm/v1/i1/p301

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Brodskii G.M., Wisbauer R., “On duality theory and AB5* modules”, Journal of Pure and Applied Algebra, 121:1 (1997), 17–27  crossref  mathscinet  isi
  • Фундаментальная и прикладная математика
    Number of views:
    This page:316
    Full text:62
    References:26
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020