RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2000, Volume 6, Issue 1, Pages 23–42 (Mi fpm446)  

This article is cited in 1 scientific paper (total in 1 paper)

Numerical solution for linear time optimal control problem

V. M. Aleksandrov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We obtain the system of linear algebraic equations connecting the differences of initial conditions for normalized conjugate system and the difference of time of process completion with those of phase coordinates of controlled system. The quasioptimal control being some piecewise continuous approximation to required optimal control is used to ensure the moving of the system from a defined initial state to the origin for fixed time. The computing process and the sequence of quasioptimal controls have been proved to converge to optimal control. The radius with quadratic speed of convergence has been found. The procedure of minimization of iteration number has been considered.

Full text: PDF file (855 kB)

Bibliographic databases:
UDC: 517.27
Received: 01.04.1997

Citation: V. M. Aleksandrov, “Numerical solution for linear time optimal control problem”, Fundam. Prikl. Mat., 6:1 (2000), 23–42

Citation in format AMSBIB
\Bibitem{Ale00}
\by V.~M.~Aleksandrov
\paper Numerical solution for linear time optimal control problem
\jour Fundam. Prikl. Mat.
\yr 2000
\vol 6
\issue 1
\pages 23--42
\mathnet{http://mi.mathnet.ru/fpm446}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1798167}
\zmath{https://zbmath.org/?q=an:1068.49502}


Linking options:
  • http://mi.mathnet.ru/eng/fpm446
  • http://mi.mathnet.ru/eng/fpm/v6/i1/p23

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Mehne, HH, “MILP modelling for the time optimal control problem in the case of multiple targets”, Optimal Control Applications & Methods, 27:2 (2006), 77  crossref  mathscinet  isi
  • Фундаментальная и прикладная математика
    Number of views:
    This page:354
    Full text:158
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020