RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2001, Volume 7, Issue 2, Pages 423–431 (Mi fpm567)  

On a class of complete intersection Calabi–Yau manifolds in toric manifolds

A. V. Krotov, V. V. Rabotin

Krasnoyarsk State University

Abstract: We consider the family of smooth $n$-dimensional toric manifolds generalizing the family of Hirzebruch surfaces to dimension $n$. We analyze conditions under which there exists a Calabi–Yau complete intersection of two ample hypersurfaces in these manifolds. This turns out to be possible only if the toric manifold is the product of projective spaces. If one of the hypersurfaces is not ample then we find Calabi–Yau complete intersection of two hypersurfaces in Fano manifolds of the given family.

Full text: PDF file (398 kB)

Bibliographic databases:
UDC: 512.7
Received: 01.02.1997

Citation: A. V. Krotov, V. V. Rabotin, “On a class of complete intersection Calabi–Yau manifolds in toric manifolds”, Fundam. Prikl. Mat., 7:2 (2001), 423–431

Citation in format AMSBIB
\Bibitem{KroRab01}
\by A.~V.~Krotov, V.~V.~Rabotin
\paper On a class of complete intersection Calabi--Yau manifolds in toric manifolds
\jour Fundam. Prikl. Mat.
\yr 2001
\vol 7
\issue 2
\pages 423--431
\mathnet{http://mi.mathnet.ru/fpm567}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1866465}
\zmath{https://zbmath.org/?q=an:1051.14058}


Linking options:
  • http://mi.mathnet.ru/eng/fpm567
  • http://mi.mathnet.ru/eng/fpm/v7/i2/p423

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:318
    Full text:101
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019