RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 1995, Volume 1, Issue 2, Pages 529–532 (Mi fpm66)  

This article is cited in 1 scientific paper (total in 1 paper)

Short communications

Annihilators and weak topologies on modules

G. M. Brodskii

P. G. Demidov Yaroslavl State University

Abstract: For a bimodule $_{S}U_{R}$ we characterize modules $M_{R}$ and submodules $T$ of $_{S}\operatorname{Hom}_{R}(M,U)$ for which the double annihilator conditions hold. We study the weak topologies induced on $M$ by $T$.

Full text: PDF file (189 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 512.553
Received: 01.03.1995

Citation: G. M. Brodskii, “Annihilators and weak topologies on modules”, Fundam. Prikl. Mat., 1:2 (1995), 529–532

Citation in format AMSBIB
\Bibitem{Bro95}
\by G.~M.~Brodskii
\paper Annihilators and weak topologies on modules
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 2
\pages 529--532
\mathnet{http://mi.mathnet.ru/fpm66}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1790980}
\zmath{https://zbmath.org/?q=an:0866.16013}


Linking options:
  • http://mi.mathnet.ru/eng/fpm66
  • http://mi.mathnet.ru/eng/fpm/v1/i2/p529

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. M. Brodskii, “Teoriya dvoistvennosti s prilozheniyami k koltsam endomorfizmov konechno koporozhdennykh in'ektivnykh koobrazuyuschikh”, Fundament. i prikl. matem., 1:4 (1995), 1095–1099  mathnet  mathscinet  zmath
  • Фундаментальная и прикладная математика
    Number of views:
    This page:151
    Full text:60
    References:38
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020