RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 1995, Volume 1, Issue 2, Pages 553–556 (Mi fpm72)  

This article is cited in 2 scientific papers (total in 2 papers)

Short communications

Binomial presentation of linear recurring sequences

V. L. Kurakin


Abstract: It is proved that any linear recurring sequence over commutative local Artinian ring $R$ can be presented as a linear combination of binomial sequences over some Galois extension $S$ of $R$. If the roots of the binomial sequences belong to the fixed coordinate set of $S$, then this presentation is unique.

Full text: PDF file (166 kB)
References: PDF file   HTML file

Bibliographic databases:
Received: 01.01.1995

Citation: V. L. Kurakin, “Binomial presentation of linear recurring sequences”, Fundam. Prikl. Mat., 1:2 (1995), 553–556

Citation in format AMSBIB
\Bibitem{Kur95}
\by V.~L.~Kurakin
\paper Binomial presentation of linear recurring sequences
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 2
\pages 553--556
\mathnet{http://mi.mathnet.ru/fpm72}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1790984}
\zmath{https://zbmath.org/?q=an:0872.11010}


Linking options:
  • http://mi.mathnet.ru/eng/fpm72
  • http://mi.mathnet.ru/eng/fpm/v1/i2/p553

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. L. Kurakin, “Linear complexity of polylinear sequences”, Discrete Math. Appl., 11:1 (2001), 1–51  mathnet  crossref  mathscinet  zmath
    2. V. L. Kurakin, “Trace representation of linear recurring sequences”, Sb. Math., 193:6 (2002), 907–924  mathnet  crossref  crossref  mathscinet  zmath  isi
  • Фундаментальная и прикладная математика
    Number of views:
    This page:363
    Full text:116
    References:25
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019