RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2003, Volume 9, Issue 1, Pages 259–262 (Mi fpm723)  

Groups of signature $(0;n;0)$

P. V. Tumarkin

M. V. Lomonosov Moscow State University

Abstract: Let $M$ be an ideal polygon with $2n-2$ vertices. Consider a pairing of the symmetrical (with respect to some fixed diagonal) sides of $M$ by mappings $S_i$, $1\le i\le n-1$, and denote by $\Gamma$ the group generated by these mappings. Each $S_i$ depends on one parameter. We prove a necessary and sufficient condition for the possibility of choosing these parameters so that our polygon $M$ would be a fundamental domain for the action of $\Gamma$.

Full text: PDF file (75 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2005, 128:6, 3501–3503

Bibliographic databases:

UDC: 512.817

Citation: P. V. Tumarkin, “Groups of signature $(0;n;0)$”, Fundam. Prikl. Mat., 9:1 (2003), 259–262; J. Math. Sci., 128:6 (2005), 3501–3503

Citation in format AMSBIB
\Bibitem{Tum03}
\by P.~V.~Tumarkin
\paper Groups of signature $(0;n;0)$
\jour Fundam. Prikl. Mat.
\yr 2003
\vol 9
\issue 1
\pages 259--262
\mathnet{http://mi.mathnet.ru/fpm723}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2072629}
\zmath{https://zbmath.org/?q=an:1068.22022}
\transl
\jour J. Math. Sci.
\yr 2005
\vol 128
\issue 6
\pages 3501--3503
\crossref{https://doi.org/10.1007/s10958-005-0285-x}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-22544457233}


Linking options:
  • http://mi.mathnet.ru/eng/fpm723
  • http://mi.mathnet.ru/eng/fpm/v9/i1/p259

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:119
    Full text:48
    References:26
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020