RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2003, Volume 9, Issue 4, Pages 41–54 (Mi fpm749)  

On soft mappings of the unit ball of Borel measures

Yu. V. Sadovnichii

M. V. Lomonosov Moscow State University

Abstract: The main result of this paper is two theorems. One of them asserts that the functor $U_\tau$ takes the 0-soft mappings between spaces of weight ${\leq} \omega_1$ and Polish spaces to soft mappings. The other theorem, which is a corollary to the first one, asserts that the functor $U_\tau$ takes the $\mathrm{AE}(0)$-spaces of weight ${\leq} \omega_1$ to $\mathrm{AE}$-spaces. These theorems are proved under Martin's axiom $MA(\omega_1)$. The results cannot be extended to spaces of weight ${\geq} \omega_2$. For spaces of weight $\omega_1$, these results cannot be obtained without additional set-theoretic assumptions. Thus, the question as to whether the space $U_\tau(\mathbb R^{\omega_1})$ is an absolute extensor cannot be answered in ZFC. The main result cannot be transferred to the functor $U_R$ of the unit ball of Radon measures. Indeed, the space $U_R(\mathbb R^{\omega_1})$ is not real-compact and, therefore, $U_R(\mathbb R^{\omega_1})\notin\mathrm{AE}(0)$.

Full text: PDF file (190 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2006, 136:5, 4156–4165

Bibliographic databases:

UDC: 515.12

Citation: Yu. V. Sadovnichii, “On soft mappings of the unit ball of Borel measures”, Fundam. Prikl. Mat., 9:4 (2003), 41–54; J. Math. Sci., 136:5 (2006), 4156–4165

Citation in format AMSBIB
\Bibitem{Sad03}
\by Yu.~V.~Sadovnichii
\paper On soft mappings of the unit ball of Borel measures
\jour Fundam. Prikl. Mat.
\yr 2003
\vol 9
\issue 4
\pages 41--54
\mathnet{http://mi.mathnet.ru/fpm749}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2093412}
\zmath{https://zbmath.org/?q=an:1073.54007}
\elib{http://elibrary.ru/item.asp?id=9068286}
\transl
\jour J. Math. Sci.
\yr 2006
\vol 136
\issue 5
\pages 4156--4165
\crossref{https://doi.org/10.1007/s10958-006-0225-4}
\elib{http://elibrary.ru/item.asp?id=13506292}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33745665853}


Linking options:
  • http://mi.mathnet.ru/eng/fpm749
  • http://mi.mathnet.ru/eng/fpm/v9/i4/p41

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Фундаментальная и прикладная математика
    Number of views:
    This page:216
    Full text:87
    References:23
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019