RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2004, Volume 10, Issue 1, Pages 5–15 (Mi fpm751)  

This article is cited in 3 scientific papers (total in 3 papers)

Symmetry constraints for real dispersionless Veselov–Novikov equation

L. V. Bogdanova, B. G. Konopelchenkobc, A. Morobc

a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
b INFN — National Institute of Nuclear Physics
c Lecce University

Abstract: Symmetry constraints for dispersionless integrable equations are discussed. It is shown that under symmetry constraints, the dispersionless Veselov–Novikov equation is reduced to the $(1+1)$-dimensional hydrodynamic-type systems.

Full text: PDF file (128 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2006, 136:6, 4411–4418

Bibliographic databases:

UDC: 517.957

Citation: L. V. Bogdanov, B. G. Konopelchenko, A. Moro, “Symmetry constraints for real dispersionless Veselov–Novikov equation”, Fundam. Prikl. Mat., 10:1 (2004), 5–15; J. Math. Sci., 136:6 (2006), 4411–4418

Citation in format AMSBIB
\Bibitem{BogKonMor04}
\by L.~V.~Bogdanov, B.~G.~Konopelchenko, A.~Moro
\paper Symmetry constraints for real dispersionless Veselov--Novikov equation
\jour Fundam. Prikl. Mat.
\yr 2004
\vol 10
\issue 1
\pages 5--15
\mathnet{http://mi.mathnet.ru/fpm751}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2119748}
\zmath{https://zbmath.org/?q=an:1073.35034}
\elib{http://elibrary.ru/item.asp?id=9068290}
\transl
\jour J. Math. Sci.
\yr 2006
\vol 136
\issue 6
\pages 4411--4418
\crossref{https://doi.org/10.1007/s10958-006-0234-3}
\elib{http://elibrary.ru/item.asp?id=14070218}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33745636609}


Linking options:
  • http://mi.mathnet.ru/eng/fpm751
  • http://mi.mathnet.ru/eng/fpm/v10/i1/p5

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. G. Konopelchenko, A. Moro, “Light Propagation in a Cole-Cole Nonlinear Medium via the Burgers–Hopf Equation”, Theoret. and Math. Phys., 144:1 (2005), 968–974  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. J.-H. Chang, Yu.-T. Chen, “Solutions of the real dispersionless Veselov–Novikov hierarchy”, Theoret. and Math. Phys., 159:3 (2009), 741–751  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. Croke R., Mueller J.L., Music M., Perry P., Siltanen S., Stahel A., “the Novikov-Veselov Equation: Theory and Computation”, Nonlinear Wave Equations: Analytic and Computational Techniques, Contemporary Mathematics, 635, eds. Curtis C., Dzhamay A., Hereman W., Prinari B., Amer Mathematical Soc, 2015, 25–70  crossref  mathscinet  zmath  isi
  • Фундаментальная и прикладная математика
    Number of views:
    This page:272
    Full text:48
    References:33
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019