RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 1995, Volume 1, Issue 2, Pages 319–375 (Mi fpm76)  

This article is cited in 3 scientific papers (total in 3 papers)

Survey

Infinite Abelian groups: methods and results

A. V. Mikhalev, A. P. Mishina

M. V. Lomonosov Moscow State University

Abstract: The review paper is devoted to methods and results from the theory of infinite Abelian groups. The content of the review: § 1 Some main definitions; § 2 Primary groups; § 3 Torsion free groups; § 4 Mixed groups; § 5 Classification theorems; § 6 Quasi-isomorphisms; § 7 Endomorphism rings and groups; § 8 Groups of homomorphisms. Extension groups; § 9 Tensor products. Torsion products; § 10 Valuated groups; § 11 Varia.

Full text: PDF file (3175 kB)
References: PDF file   HTML file

Bibliographic databases:
Received: 01.02.1995

Citation: A. V. Mikhalev, A. P. Mishina, “Infinite Abelian groups: methods and results”, Fundam. Prikl. Mat., 1:2 (1995), 319–375

Citation in format AMSBIB
\Bibitem{MikMis95}
\by A.~V.~Mikhalev, A.~P.~Mishina
\paper Infinite Abelian groups: methods and results
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 2
\pages 319--375
\mathnet{http://mi.mathnet.ru/fpm76}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1790968}
\zmath{https://zbmath.org/?q=an:0878.20037}


Linking options:
  • http://mi.mathnet.ru/eng/fpm76
  • http://mi.mathnet.ru/eng/fpm/v1/i2/p319

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. R. Chekhlov, “On a Class of Endotransitive Groups”, Math. Notes, 69:6 (2001), 863–867  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. P. A. Krylov, E. G. Pakhomova, “When Is the Group $\operatorname{Hom}(A,B)$ an Injective $E(B)$-Module?”, Math. Notes, 75:1 (2004), 93–100  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. V. V. Kochergin, “O slozhnosti sovmestnogo vychisleniya trekh elementov svobodnoi abelevoi gruppy s dvumya obrazuyuschimi”, Diskretn. analiz i issled. oper., 15:2 (2008), 23–64  mathnet  mathscinet  zmath
  • Фундаментальная и прикладная математика
    Number of views:
    This page:589
    Full text:246
    References:58
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020