|
This article is cited in 8 scientific papers (total in 8 papers)
Elementary equivalence of categories of modules over rings, endomorphism rings, and automorphism groups of modules
E. I. Bunina, A. V. Mikhalev M. V. Lomonosov Moscow State University
Abstract:
In this paper we give a small review of some recent results of elementary equivalence of linear and algebraic groups and our last new results of elementary equivalence of categories of modules, endomorphism rings of modules, lattices of submodules of modules, and automorphism groups of modules.
Full text:
PDF file (702 kB)
References:
PDF file
HTML file
English version:
Journal of Mathematical Sciences (New York), 2006, 137:6, 5275–5335
Bibliographic databases:
UDC:
510.67+512.55+512.58
Citation:
E. I. Bunina, A. V. Mikhalev, “Elementary equivalence of categories of modules over rings, endomorphism rings, and automorphism groups of modules”, Fundam. Prikl. Mat., 10:2 (2004), 51–134; J. Math. Sci., 137:6 (2006), 5275–5335
Citation in format AMSBIB
\Bibitem{BunMik04}
\by E.~I.~Bunina, A.~V.~Mikhalev
\paper Elementary equivalence of categories of modules over rings, endomorphism rings, and automorphism groups of modules
\jour Fundam. Prikl. Mat.
\yr 2004
\vol 10
\issue 2
\pages 51--134
\mathnet{http://mi.mathnet.ru/fpm765}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2113045}
\zmath{https://zbmath.org/?q=an:1073.20045}
\elib{http://elibrary.ru/item.asp?id=9068304}
\transl
\jour J. Math. Sci.
\yr 2006
\vol 137
\issue 6
\pages 5275--5335
\crossref{https://doi.org/10.1007/s10958-006-0297-1}
\elib{http://elibrary.ru/item.asp?id=14220996}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747111702}
Linking options:
http://mi.mathnet.ru/eng/fpm765 http://mi.mathnet.ru/eng/fpm/v10/i2/p51
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
E. I. Bunina, A. V. Mikhalev, “Elementary equivalence of endomorphism rings of Abelian $p$-groups”, J. Math. Sci., 137:6 (2006), 5212–5274
-
E. I. Bunina, A. V. Mikhalev, “Elementary properties of categories of acts over monoids”, Algebra and Logic, 45:6 (2006), 389–402
-
E. I. Bunina, M. A. Roizner, “Elementary equivalence of the automorphism groups of Abelian $p$-groups”, J. Math. Sci., 169:5 (2010), 614–635
-
M. A. Roizner, “A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups”, J. Math. Sci., 193:4 (2013), 586–590
-
M. A. Roizner, “A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups”, J. Math. Sci., 201:4 (2014), 519–526
-
M. A. Roizner, “Elementary equivalence of automorphism groups of reduced Abelian $p$-groups”, Moscow University Mathematics Bulletin, 68:3 (2013), 156–161
-
E. I. Bunina, A. V. Mikhalev, I. O. Solovyev, “Elementary equivalence of stable linear groups over local commutative rings with $1/2$”, J. Math. Sci., 233:5 (2018), 646–655
-
E. I. Bunina, N. V. Yugai, “Elementarnaya ekvivalentnost monoidov endomorfizmov pochti svobodnykh poligonov”, Fundament. i prikl. matem., 21:2 (2016), 37–52
|
Number of views: |
This page: | 390 | Full text: | 76 | References: | 38 | First page: | 1 |
|