|
This article is cited in 10 scientific papers (total in 10 papers)
Problems in algebra inspired by universal algebraic geometry
B. I. Plotkin Hebrew University of Jerusalem
Abstract:
Let $\Theta$ be a variety of algebras. In every variety $\Theta$ and every algebra $H$ from $\Theta$ one can consider algebraic geometry in $\Theta$ over $H$. We also consider a special categorical invariant $K_\Theta(H)$ of this geometry. The classical algebraic geometry deals with the variety $\Theta=\mathrm{Com-}P$ of all associative and commutative algebras over the ground field of constants $P$. An algebra $H$ in this setting is an extension of the ground field $P$. Geometry in groups is related to the varieties $\mathrm{Grp}$ and $\mathrm{Grp-}G$, where $G$ is a group of constants. The case $\mathrm{Grp-}F$, where $F$ is a free group, is related to Tarski's problems devoted to logic of a free group. The described general insight on algebraic geometry in different varieties of algebras inspires some new problems in algebra and algebraic geometry. The problems of such kind determine, to a great extent, the content of universal algebraic geometry. For example, a general and natural problem is: When do algebras $H_1$ and $H_2$ have the same geometry? Or more specifically, what are the conditions on algebras from a given variety $\Theta$ that provide the coincidence of their algebraic geometries? We consider two variants of coincidence: 1) $K_\Theta(H_1)$ and $K_\Theta(H_2)$ are isomorphic; 2) these categories are equivalent. This problem is closely connected with the following general algebraic problem. Let $\Theta^0$ be the category of all algebras $W=W(X)$ free in $\Theta$, where $X$ is finite. Consider the groups of automorphisms $\operatorname{Aut}(\Theta^0)$ for different varieties $\Theta$ and also the groups of autoequivalences of $\Theta^0$. The problem is to describe these groups for different $\Theta$.
Full text:
PDF file (188 kB)
References:
PDF file
HTML file
English version:
Journal of Mathematical Sciences (New York), 2006, 139:4, 6780–6791
Bibliographic databases:
UDC:
512.7
Citation:
B. I. Plotkin, “Problems in algebra inspired by universal algebraic geometry”, Fundam. Prikl. Mat., 10:3 (2004), 181–197; J. Math. Sci., 139:4 (2006), 6780–6791
Citation in format AMSBIB
\Bibitem{Plo04}
\by B.~I.~Plotkin
\paper Problems in algebra inspired by universal algebraic geometry
\jour Fundam. Prikl. Mat.
\yr 2004
\vol 10
\issue 3
\pages 181--197
\mathnet{http://mi.mathnet.ru/fpm777}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2123349}
\zmath{https://zbmath.org/?q=an:1072.08002}
\elib{https://elibrary.ru/item.asp?id=9068315}
\transl
\jour J. Math. Sci.
\yr 2006
\vol 139
\issue 4
\pages 6780--6791
\crossref{https://doi.org/10.1007/s10958-006-0390-5}
\elib{https://elibrary.ru/item.asp?id=14134984}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33750522806}
Linking options:
http://mi.mathnet.ru/eng/fpm777 http://mi.mathnet.ru/eng/fpm/v10/i3/p181
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Katsov, Y, “On geometrically equivalent S-ACTS”, International Journal of Algebra and Computation, 17:5–6 (2007), 1055
-
Plotkin, B, “Some results and problems related to universal algebraic geometry”, International Journal of Algebra and Computation, 17:5–6 (2007), 1133
-
A. G. Pinus, “Geometric scales for varieties of algebras and quasi-identities”, Siberian Adv. Math., 20:3 (2010), 217–222
-
A. G. Pinus, “On the Geometrically Complete Varieties of Algebras”, J. Math. Sci., 205:3 (2015), 440–444
-
E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraic geometry over algebraic structures. VI. Geometric equivalence”, Algebra and Logic, 56:4 (2017), 281–294
-
E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Universal geometrical equivalence of the algebraic structures of common signature”, Siberian Math. J., 58:5 (2017), 801–812
-
Shahryari M. Shevlyakov A., “Direct Products, Varieties, and Compactness Conditions”, Groups Complex. Cryptol., 9:2 (2017), 159–166
-
E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. VIII. Geometricheskie ekvivalentnosti i osobye klassy algebraicheskikh sistem”, Fundament. i prikl. matem., 22:4 (2019), 75–100
-
A. G. Pinus, “O predstavlenii reshetok algebraicheskikh mnozhestv universalnykh algebr”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 29 (2019), 98–106
-
A. G. Pinus, “Algebraicheskie mnozhestva shirokikh algebr”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 32 (2020), 94–100
|
Number of views: |
This page: | 367 | Full text: | 136 | References: | 39 |
|