General information
Latest issue
Impact factor
Journal history

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Fundam. Prikl. Mat.:

Personal entry:
Save password
Forgotten password?

Fundam. Prikl. Mat., 2004, Volume 10, Issue 3, Pages 181–197 (Mi fpm777)  

This article is cited in 7 scientific papers (total in 7 papers)

Problems in algebra inspired by universal algebraic geometry

B. I. Plotkin

Hebrew University of Jerusalem

Abstract: Let $\Theta$ be a variety of algebras. In every variety $\Theta$ and every algebra $H$ from $\Theta$ one can consider algebraic geometry in $\Theta$ over $H$. We also consider a special categorical invariant $K_\Theta(H)$ of this geometry. The classical algebraic geometry deals with the variety $\Theta=\mathrm{Com-}P$ of all associative and commutative algebras over the ground field of constants $P$. An algebra $H$ in this setting is an extension of the ground field $P$. Geometry in groups is related to the varieties $\mathrm{Grp}$ and $\mathrm{Grp-}G$, where $G$ is a group of constants. The case $\mathrm{Grp-}F$, where $F$ is a free group, is related to Tarski's problems devoted to logic of a free group. The described general insight on algebraic geometry in different varieties of algebras inspires some new problems in algebra and algebraic geometry. The problems of such kind determine, to a great extent, the content of universal algebraic geometry. For example, a general and natural problem is: When do algebras $H_1$ and $H_2$ have the same geometry? Or more specifically, what are the conditions on algebras from a given variety $\Theta$ that provide the coincidence of their algebraic geometries? We consider two variants of coincidence: 1) $K_\Theta(H_1)$ and $K_\Theta(H_2)$ are isomorphic; 2) these categories are equivalent. This problem is closely connected with the following general algebraic problem. Let $\Theta^0$ be the category of all algebras $W=W(X)$ free in $\Theta$, where $X$ is finite. Consider the groups of automorphisms $\operatorname{Aut}(\Theta^0)$ for different varieties $\Theta$ and also the groups of autoequivalences of $\Theta^0$. The problem is to describe these groups for different $\Theta$.

Full text: PDF file (188 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2006, 139:4, 6780–6791

Bibliographic databases:

UDC: 512.7

Citation: B. I. Plotkin, “Problems in algebra inspired by universal algebraic geometry”, Fundam. Prikl. Mat., 10:3 (2004), 181–197; J. Math. Sci., 139:4 (2006), 6780–6791

Citation in format AMSBIB
\by B.~I.~Plotkin
\paper Problems in algebra inspired by universal algebraic geometry
\jour Fundam. Prikl. Mat.
\yr 2004
\vol 10
\issue 3
\pages 181--197
\jour J. Math. Sci.
\yr 2006
\vol 139
\issue 4
\pages 6780--6791

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Katsov, Y, “On geometrically equivalent S-ACTS”, International Journal of Algebra and Computation, 17:5–6 (2007), 1055  crossref  mathscinet  zmath  isi
    2. Plotkin, B, “Some results and problems related to universal algebraic geometry”, International Journal of Algebra and Computation, 17:5–6 (2007), 1133  crossref  mathscinet  zmath  isi
    3. A. G. Pinus, “Geometric scales for varieties of algebras and quasi-identities”, Siberian Adv. Math., 20:3 (2010), 217–222  mathnet  crossref  mathscinet
    4. A. G. Pinus, “On the Geometrically Complete Varieties of Algebras”, J. Math. Sci., 205:3 (2015), 440–444  mathnet  crossref
    5. E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraic geometry over algebraic structures. VI. Geometric equivalence”, Algebra and Logic, 56:4 (2017), 281–294  mathnet  crossref  crossref  isi
    6. E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Universal geometrical equivalence of the algebraic structures of common signature”, Siberian Math. J., 58:5 (2017), 801–812  mathnet  crossref  crossref  isi  elib  elib
    7. Shahryari M. Shevlyakov A., “Direct Products, Varieties, and Compactness Conditions”, Groups Complex. Cryptol., 9:2 (2017), 159–166  crossref  mathscinet  zmath  isi  scopus
  • Фундаментальная и прикладная математика
    Number of views:
    This page:319
    Full text:106

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020