RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 1995, Volume 1, Issue 2, Pages 491–516 (Mi fpm81)  

This article is cited in 4 scientific papers (total in 4 papers)

Mathematical Enlightenment

Compulsory configurations of points in the plane

B. Kh. Sendov

Center for Informatics and Computer Technology, Bulgarian Academy of Sciences

Abstract: Let $P$ be a set of $N$ points in a general position (no three points are collinear) on the plane. A subset of $P$ may form a specific configuration, say obtuse triangle or convex pentagon. There exist configurations of points, that compulsory emerge in every point set of great enough cardinality. In this paper, such compulsory configurations of points on the plane are considered.

Full text: PDF file (923 kB)
References: PDF file   HTML file

Bibliographic databases:
Received: 01.01.1995

Citation: B. Kh. Sendov, “Compulsory configurations of points in the plane”, Fundam. Prikl. Mat., 1:2 (1995), 491–516

Citation in format AMSBIB
\Bibitem{Sen95}
\by B.~Kh.~Sendov
\paper Compulsory configurations of points in the plane
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 2
\pages 491--516
\mathnet{http://mi.mathnet.ru/fpm81}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1790977}
\zmath{https://zbmath.org/?q=an:0872.51002}


Linking options:
  • http://mi.mathnet.ru/eng/fpm81
  • http://mi.mathnet.ru/eng/fpm/v1/i2/p491

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Koshelev, “Almost empty hexagons”, J. Math. Sci., 164:1 (2010), 60–81  mathnet  crossref  mathscinet
    2. Koshelev, VA, “Around Erdos-Szekeres problems”, Doklady Mathematics, 79:3 (2009), 360  mathnet  crossref  mathscinet  zmath  isi  elib
    3. V. A. Koshelev, “Computer Solution of the Almost Empty Hexagon Problem”, Math. Notes, 89:3 (2011), 455–458  mathnet  crossref  crossref  mathscinet  isi
    4. V. A. Koshelev, “Interior Points in the Erdős–Szekeres Theorems”, Math. Notes, 91:4 (2012), 542–557  mathnet  crossref  crossref  mathscinet  isi  elib  elib
  • Фундаментальная и прикладная математика
    Number of views:
    This page:272
    Full text:130
    References:36
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020