|
On difficult problems and locally graded groups
O. Macedońska Silesian University of Technology
Abstract:
Some problems that in general have a negative answer have an affirmative answer in the class of locally graded groups and a negative answer outside of this class. We present three such problems and mention other three, which possibly are of that type.
Full text:
PDF file (483 kB)
References:
PDF file
HTML file
English version:
Journal of Mathematical Sciences (New York), 2007, 142:2, 1949–1953
Bibliographic databases:
UDC:
512.544.23+512.543.2+512.543.22+512.543.27
Citation:
O. Macedońska, “On difficult problems and locally graded groups”, Fundam. Prikl. Mat., 11:2 (2005), 127–133; J. Math. Sci., 142:2 (2007), 1949–1953
Citation in format AMSBIB
\Bibitem{Mac05}
\by O.~Macedo{\'n}ska
\paper On difficult problems and locally graded groups
\jour Fundam. Prikl. Mat.
\yr 2005
\vol 11
\issue 2
\pages 127--133
\mathnet{http://mi.mathnet.ru/fpm816}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2157934}
\zmath{https://zbmath.org/?q=an:1073.20019}
\transl
\jour J. Math. Sci.
\yr 2007
\vol 142
\issue 2
\pages 1949--1953
\crossref{https://doi.org/10.1007/s10958-007-0102-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947377962}
Linking options:
http://mi.mathnet.ru/eng/fpm816 http://mi.mathnet.ru/eng/fpm/v11/i2/p127
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 164 | Full text: | 85 | References: | 36 |
|