General information
Latest issue
Impact factor
Journal history

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Fundam. Prikl. Mat.:

Personal entry:
Save password
Forgotten password?

Fundam. Prikl. Mat., 2005, Volume 11, Issue 3, Pages 13–48 (Mi fpm826)  

This article is cited in 9 scientific papers (total in 9 papers)

Profinite groups associated with weakly primitive substitutions

J. Almeida

University of Porto

Abstract: A uniformly recurrent pseudoword is an element of a free profinite semigroup in which every finite factor appears in every sufficiently long finite factor. An alternative characterization is as a pseudoword that is a factor of all its infinite factors, i.e., one that lies in a $\mathcal J$-class with only finite words strictly $\mathcal J$-above it. Such a $\mathcal J$-class is regular, and therefore it has an associated profinite group, namely any of its maximal subgroups. One way to produce such $\mathcal J$-classes is to iterate finite weakly primitive substitutions. This paper is a contribution to the computation of the profinite group associated with the $\mathcal J$-class that is generated by the infinite iteration of a finite weakly primitive substitution. The main result implies that the group is a free profinite group provided the substitution induced on the free group on the letters that appear in the images of all of its sufficiently long iterates is invertible.

Full text: PDF file (385 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2007, 144:2, 3881–3903

Bibliographic databases:

UDC: 512.53

Citation: J. Almeida, “Profinite groups associated with weakly primitive substitutions”, Fundam. Prikl. Mat., 11:3 (2005), 13–48; J. Math. Sci., 144:2 (2007), 3881–3903

Citation in format AMSBIB
\by J.~Almeida
\paper Profinite groups associated with weakly primitive substitutions
\jour Fundam. Prikl. Mat.
\yr 2005
\vol 11
\issue 3
\pages 13--48
\jour J. Math. Sci.
\yr 2007
\vol 144
\issue 2
\pages 3881--3903

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Rhodes J., Steinberg B., “Closed subgroups of free profinite monoids are projective profinite groups”, Bull. Lond. Math. Soc., 40:3 (2008), 375–383  crossref  mathscinet  zmath  isi  elib
    2. Almeida J., Steinberg B., “Rational codes and free profinite monoids”, J. Lond. Math. Soc. (2), 79:2 (2009), 465–477  crossref  mathscinet  zmath  isi
    3. Almeida J., Costa A., “Infinite-vertex free profinite semigroupoids and symbolic dynamics”, J. Pure Appl. Algebra, 213:5 (2009), 605–631  crossref  mathscinet  zmath  isi  elib
    4. Steinberg B., “Maximal subgroups of the minimal ideal of a free profinite monoid are free”, Israel J. Math., 176:1 (2010), 139–155  crossref  mathscinet  zmath  isi  elib
    5. Costa A., Steinberg B., “Profinite groups associated to sofic shifts are free”, Proc. Lond. Math. Soc., 102:2 (2011), 341–369  crossref  mathscinet  zmath  isi  elib
    6. Steinberg B., “On the endomorphism monoid of a profinite semigroup”, Portugaliae Mathematica, 68:2 (2011), 177–183  crossref  mathscinet  zmath  isi  elib
    7. Almeida J., Costa A., “On the Transition Semigroups of Centrally Labeled Rauzy Graphs”, Internat J Algebra Comput, 22:2 (2012), 1250018  crossref  mathscinet  zmath  isi  elib
    8. Almeida J., Costa A., “Presentations of Schutzenberger Groups of Minimal Subshifts”, Isr. J. Math., 196:1 (2013), 1–31  crossref  mathscinet  zmath  isi  elib
    9. Almeida J., Costa J.C., Zeitoun M., “Iterated Periodicity Over Finite Aperiodic Semigroups”, Eur. J. Comb., 37:SI (2014), 115–149  crossref  mathscinet  zmath  isi  elib
  • Фундаментальная и прикладная математика
    Number of views:
    This page:148
    Full text:46

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019