|
On multiple integrals represented as a linear form in $1,\zeta(3),\zeta(5),…,\zeta(2k-1)$
V. Kh. Salikhova, A. I. Frolovichevb a Bryansk Institute of Transport Engineering
b Bryansk State Technical University
Abstract:
A theorem on the presentability of a multiple integral as a linear form in $1,\zeta(3),\zeta(5),…,\zeta(2k-1)$ over $\mathbb Q$ is proved. This theorem refines the results recently obtained by D. Vasiliev, V. Zudilin, and S. Zlobin.
Full text:
PDF file (341 kB)
References:
PDF file
HTML file
English version:
Journal of Mathematical Sciences (New York), 2007, 146:2, 5731–5758
Bibliographic databases:
UDC:
511.36
Citation:
V. Kh. Salikhov, A. I. Frolovichev, “On multiple integrals represented as a linear form in $1,\zeta(3),\zeta(5),…,\zeta(2k-1)$”, Fundam. Prikl. Mat., 11:6 (2005), 143–178; J. Math. Sci., 146:2 (2007), 5731–5758
Citation in format AMSBIB
\Bibitem{SalFro05}
\by V.~Kh.~Salikhov, A.~I.~Frolovichev
\paper On multiple integrals represented as a~linear form in $1,\zeta(3),\zeta(5),\dots,\zeta(2k-1)$
\jour Fundam. Prikl. Mat.
\yr 2005
\vol 11
\issue 6
\pages 143--178
\mathnet{http://mi.mathnet.ru/fpm891}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2204430}
\zmath{https://zbmath.org/?q=an:05358123}
\transl
\jour J. Math. Sci.
\yr 2007
\vol 146
\issue 2
\pages 5731--5758
\crossref{https://doi.org/10.1007/s10958-007-0389-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34848869027}
Linking options:
http://mi.mathnet.ru/eng/fpm891 http://mi.mathnet.ru/eng/fpm/v11/i6/p143
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 300 | Full text: | 121 | References: | 22 | First page: | 1 |
|