|
On $\Sigma$-nilpotent ideals of topological PI-rings
V. T. Markov, V. V. Tenzina M. V. Lomonosov Moscow State University
Abstract:
We show that under certain conditions on the topology of a faithful module $M$ over a topological PI-ring $R$, if $M$ has at most countable dual topological Krull dimension, then the closure of the sum of all $\Sigma$-nilpotent ideals of the ring $R$ is a $\Sigma$-nilpotent ideal too, and in the case of a bounded ring $R$ its topological Baer radical is $\Sigma$-nilpotent.
Full text:
PDF file (116 kB)
References:
PDF file
HTML file
English version:
Journal of Mathematical Sciences (New York), 2008, 149:2, 1113–1118
Bibliographic databases:
UDC:
512.556
Citation:
V. T. Markov, V. V. Tenzina, “On $\Sigma$-nilpotent ideals of topological PI-rings”, Fundam. Prikl. Mat., 12:2 (2006), 111–118; J. Math. Sci., 149:2 (2008), 1113–1118
Citation in format AMSBIB
\Bibitem{MarTen06}
\by V.~T.~Markov, V.~V.~Tenzina
\paper On $\Sigma$-nilpotent ideals of topological PI-rings
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 2
\pages 111--118
\mathnet{http://mi.mathnet.ru/fpm938}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2249696}
\zmath{https://zbmath.org/?q=an:1179.16027}
\elib{https://elibrary.ru/item.asp?id=9307280}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 149
\issue 2
\pages 1113--1118
\crossref{https://doi.org/10.1007/s10958-008-0050-z}
\elib{https://elibrary.ru/item.asp?id=13569231}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38549101977}
Linking options:
http://mi.mathnet.ru/eng/fpm938 http://mi.mathnet.ru/eng/fpm/v12/i2/p111
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 284 | Full text: | 108 | References: | 38 | First page: | 1 |
|