RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundam. Prikl. Mat., 2006, Volume 12, Issue 4, Pages 21–39 (Mi fpm957)  

This article is cited in 3 scientific papers (total in 3 papers)

On the unique solvability of a family of two-point boundary-value problems for systems of ordinary differential equations

A. T. Asanova

Institute of Mathematics, Ministry of Education and Science of the Republic of Kazakhstan

Abstract: We consider a family of two-point boundary-value problems for systems of ordinary differential equations with functional parameters. This family is the result of the reduction of a boundary-value problem with nonlocal condition for a system of second-order quasilinear hyperbolic equations by introduction of additional functions. Using the parametrization method, we establish necessary and sufficient conditions of the unique solvability of the family of two-point boundary-value problems for a linear system in terms of initial data. We also prove sufficient conditions of the unique solvability of the problem considered and propose an algorithm for its solution.

Full text: PDF file (190 kB)
References: PDF file   HTML file

English version:
Journal of Mathematical Sciences (New York), 2008, 150:5, 2302–2316

Bibliographic databases:

UDC: 517.925+517.95

Citation: A. T. Asanova, “On the unique solvability of a family of two-point boundary-value problems for systems of ordinary differential equations”, Fundam. Prikl. Mat., 12:4 (2006), 21–39; J. Math. Sci., 150:5 (2008), 2302–2316

Citation in format AMSBIB
\Bibitem{Ass06}
\by A.~T.~Asanova
\paper On the unique solvability of a~family of two-point boundary-value problems for systems of ordinary differential equations
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 4
\pages 21--39
\mathnet{http://mi.mathnet.ru/fpm957}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2314143}
\zmath{https://zbmath.org/?q=an:1151.35402}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 150
\issue 5
\pages 2302--2316
\crossref{https://doi.org/10.1007/s10958-008-0130-0}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42149195075}


Linking options:
  • http://mi.mathnet.ru/eng/fpm957
  • http://mi.mathnet.ru/eng/fpm/v12/i4/p21

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. T. Assanova, A. E. Imanchiev, “On conditions of the solvability of nonlocal multi-point boundary value problems for quasi-linear systems of hyperbolic equations”, Eurasian Math. J., 6:4 (2015), 19–28  mathnet
    2. Asanova A.T., “on Solvability of Nonlinear Boundary Value Problems With Integral Condition For the System of Hyperbolic Equations”, Electron. J. Qual. Theory Differ., 2015, no. 63, UNSP 63  mathscinet  isi  elib
    3. A. T. Assanova, A. P. Sabalakhova, “On the unique solvability of nonlocal problems with integral conditions for a hybrid system of partial differential equations”, Eurasian Math. J., 9:3 (2018), 14–24  mathnet  crossref
  • Фундаментальная и прикладная математика
    Number of views:
    This page:291
    Full text:116
    References:46
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020