Информатика и её применения
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Информ. и её примен.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Информ. и её примен., 2013, том 7, выпуск 4, страницы 11–19 (Mi ia281)  

Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)

Предельная теорема для геометрических сумм независимых неодинаково распределенных случайных величин и ее применение к прогнозированию вероятности катастроф в неоднородных потоках экстремальных событий

М. Е. Григорьеваa, В. Ю. Королевbc, И. А. Соколовc

a Parexel International
b Факультет вычислительной математики и кибернетики Московского государственного университета им. М. В. Ломоносова
c Институт проблем информатики Российской академии наук

Аннотация: Рассматривается задача прогнозирования вероятностей катастроф в неоднородных потоках экстремальных событий. Статья развивает и обобщает некоторые методы, предложенные авторами в предыдущих работах. Поток экстремальных событий рассматривается как маркированный точечный случайный процесс с необязательно одинаково распределенными интервалами между точками (событиями). Основой предлагаемых обобщений служат предельные теоремы для геометрических случайных сумм независимых неодинаково распределенных случайных величин и теория Балкемы–Пикандса–Де Хаана. Рассмотрена конструкция, в рамках которой в качестве предельного распределения для геометрических случайных сумм независимых неодинаково распределенных случайных величин возникает распределение Вейбулла–Гнеденко. Эффективность методов иллюстрируется на примере их применения к прогнозированию момента столкновения Земли с потенциально опасным астероидом на основе данных Центра по малым планетам Гарвардского университета.

Ключевые слова: катастрофа; экстремальное событие; случайная сумма; геометрическая сумма; закон больших чисел; распределение Вейбулла–Гнеденко; теорема Балкемы–Пикандса–Де Хаана; обобщенное распределение Парето.

DOI: https://doi.org/10.14357/19922264130402

Полный текст: PDF файл (201 kB)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
Поступила в редакцию: 20.10.2013

Образец цитирования: М. Е. Григорьева, В. Ю. Королев, И. А. Соколов, “Предельная теорема для геометрических сумм независимых неодинаково распределенных случайных величин и ее применение к прогнозированию вероятности катастроф в неоднородных потоках экстремальных событий”, Информ. и её примен., 7:4 (2013), 11–19

Цитирование в формате AMSBIB
\RBibitem{GriKorSok13}
\by М.~Е.~Григорьева, В.~Ю.~Королев, И.~А.~Соколов
\paper Предельная теорема для геометрических сумм независимых неодинаково распределенных случайных величин и ее применение к прогнозированию вероятности катастроф в неоднородных потоках экстремальных событий
\jour Информ. и её примен.
\yr 2013
\vol 7
\issue 4
\pages 11--19
\mathnet{http://mi.mathnet.ru/ia281}
\crossref{https://doi.org/10.14357/19922264130402}
\elib{https://elibrary.ru/item.asp?id=21006081}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/ia281
  • http://mi.mathnet.ru/rus/ia/v7/i4/p11

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. В. Ю. Королев, И. А. Соколов, “Об условиях сходимости распределений экстремальных порядковых статистик к распределению Вейбулла”, Информ. и её примен., 8:3 (2014), 3–11  mathnet  crossref  elib
    2. В. Ю. Королев, А. Ю. Корчагин, А. И. Зейфман, “Теорема Пуассона для схемы испытаний Бернулли со случайной вероятностью успеха и дискретный аналог распределения Вейбулла”, Информ. и её примен., 10:4 (2016), 11–20  mathnet  crossref  elib
    3. V. Yu. Korolev, A. Yu. Korchagin, A. I. Zeifman, “On doubly stochastic rarefaction of renewal processes”, Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2016, ICNAAM-2016, AIP Conf. Proc., 1863, eds. T. Simos, C. Tsitouras, Amer. Inst. Phys., 2017, UNSP 090010-1  crossref  isi  scopus
  • Информатика и её применения
    Просмотров:
    Эта страница:405
    Полный текст:163
    Литература:36
    Первая стр.:1
     
    Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021