RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Inform. Primen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Inform. Primen., 2015, Volume 9, Issue 4, Pages 3–13 (Mi ia387)  

This article is cited in 6 scientific papers (total in 6 papers)

Statistical modeling of airsea turbulent heat fluxes by the method of moving separation of finite normal mixtures

V. Yu. Korolevab, A. K. Gorsheninbc, S. K. Gulevdef, K. P. Belyaevfg

a Faculty of Computational Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, 1-52 Leninskiye Gory, GSP-1, Moscow 119991, Russian Federation
b Institute of Informatics Problems, Federal Research Center Computer Science and Control of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
c Moscow State University of Information Technologies, Radioengineering, and Electronics, 78 Vernadskogo Ave., Moscow 119454, Russian Federation
d University of Kiel, Christian-Albrechts-Universität zu Kiel, 4 Christian-Albrechts-Platz, Kiel 24098, Germany
e Faculty of Geography, M.V. Lomonosov Moscow State University, 1 Leninskiye Gory, GSP-1, Moscow 119991, Russian Federation
f P.P. Shirshov Institute of Oceanology, 36 Nakhimovski Prosp., Moscow 117997, Russian Federation
g Federal University of Bahia, Rua Adhemar de Barros, no 500, Ondina, 40.710-110, Salvador, Bahia, Brazil

Abstract: The method of moving separation of mixtures is applied to the problem of statistical modeling of regularities in explicit and latent turbulent heat fluxes. The six-hour observations in the Atlantic region (NCEP-NCAR, 1948–2008) are used as initial data. The basic approximate mathematical model is a finite normal mixture with parameters depending on time. The methodology of moving separation of mixtures allows one to analyze the regularities in the variation of parameters and to capture the variability which can be associated with the trend as well as the irregular variation. An approach is proposed to the determination of the proportion of extreme observations in the original sample.

Keywords: finite normal mixtures; moving separation of mixtures; probabilistic models; data mining.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation -4103.2014.9
Russian Foundation for Basic Research 15-07-02652
15-37-20851
The work was supported by the President of the Russian Federation (grant MK-4103.2014.9) and the Russian Foundation for Basic Research (projects 15-07-02652 and 15-37-20851).


DOI: https://doi.org/10.14357/1992264150401

Full text: PDF file (2128 kB)
References: PDF file   HTML file

Received: 04.09.2015

Citation: V. Yu. Korolev, A. K. Gorshenin, S. K. Gulev, K. P. Belyaev, “Statistical modeling of airsea turbulent heat fluxes by the method of moving separation of finite normal mixtures”, Inform. Primen., 9:4 (2015), 3–13

Citation in format AMSBIB
\Bibitem{KorGorGul15}
\by V.~Yu.~Korolev, A.~K.~Gorshenin, S.~K.~Gulev, K.~P.~Belyaev
\paper Statistical modeling of airsea turbulent heat fluxes by the method of moving separation of finite normal mixtures
\jour Inform. Primen.
\yr 2015
\vol 9
\issue 4
\pages 3--13
\mathnet{http://mi.mathnet.ru/ia387}
\crossref{https://doi.org/10.14357/1992264150401}
\elib{https://elibrary.ru/item.asp?id=25133764}


Linking options:
  • http://mi.mathnet.ru/eng/ia387
  • http://mi.mathnet.ru/eng/ia/v9/i4/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. K. Gorshenin, “Kontseptsiya onlain-kompleksa dlya stokhasticheskogo modelirovaniya realnykh protsessov”, Inform. i ee primen., 10:1 (2016), 72–81  mathnet  crossref  elib
    2. I. N. Sinitsyn, V. I. Sinitsyn, I. V. Sergeev, E. R. Korepanov, V. V. Belousov, V. S. Shorgin, “Matematicheskoe obespechenie analiticheskogo modelirovaniya normalnykh protsessov v stokhasticheskikh sistemakh so slozhnymi drobno-ratsionalnymi nelineinostyami”, Sistemy i sredstva inform., 26:1 (2016), 227–247  mathnet  crossref  elib
    3. I. N. Sinitsyn, V. I. Sinitsyn, I. V. Sergeev, E. R. Korepanov, V. V. Belousov, V. S. Shorgin, E. S. Agafonov, “Matematicheskoe obespechenie suboptimalnoi normalnoi filtratsii v stokhasticheskikh sistemakh so slozhnymi drobno-ratsionalnymi nelineinostyami”, Sistemy i sredstva inform., 26:3 (2016), 4–25  mathnet  crossref  elib
    4. A. K. Gorshenin, V. Yu. Kuzmin, “Primenenie arkhitektury CUDA pri realizatsii setochnykh algoritmov dlya metoda skolzyaschego razdeleniya smesei”, Sistemy i sredstva inform., 26:4 (2016), 60–73  mathnet  crossref  elib
    5. A. K. Gorshenin, “O nekotorykh matematicheskikh i programmnykh metodakh postroeniya strukturnykh modelei informatsionnykh potokov”, Inform. i ee primen., 11:1 (2017), 58–68  mathnet  crossref  elib
    6. A. V. Lebedev, “Netranzitivnye triplety nepreryvnykh sluchainykh velichin i ikh prilozheniya”, Inform. i ee primen., 13:3 (2019), 20–26  mathnet  crossref
  • Number of views:
    This page:205
    Full text:54
    References:59

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020