RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Inform. Primen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Inform. Primen., 2009, Volume 3, Issue 3, Pages 69–78 (Mi ia72)  

This article is cited in 4 scientific papers (total in 4 papers)

Some estimates for characteristic functions with an application to sharpening the Mises inequality

I. G. Shevtsova

M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics

Abstract: New estimates are constructed for characteristic functions of distributions with finite absolute moments of order $2+\delta$, $0<\delta<1$. TheMises moment inequality for lattice distributions is also improved.

Keywords: Fourier transform; characteristic function; symmetrization; convolution; lattice distribution; arithmetic distribution; span

Full text: PDF file (205 kB)
References: PDF file   HTML file

Citation: I. G. Shevtsova, “Some estimates for characteristic functions with an application to sharpening the Mises inequality”, Inform. Primen., 3:3 (2009), 69–78

Citation in format AMSBIB
\Bibitem{She09}
\by I.~G.~Shevtsova
\paper Some estimates for characteristic functions with an application to sharpening the Mises inequality
\jour Inform. Primen.
\yr 2009
\vol 3
\issue 3
\pages 69--78
\mathnet{http://mi.mathnet.ru/ia72}


Linking options:
  • http://mi.mathnet.ru/eng/ia72
  • http://mi.mathnet.ru/eng/ia/v3/i3/p69

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. O. Gaponova, I. G. Shevtsova, “Asimptoticheskie otsenki absolyutnoi postoyannoi v neravenstve Berri–Esseena dlya raspredelenii, ne imeyuschikh tretego momenta”, Inform. i ee primen., 3:4 (2009), 41–56  mathnet
    2. M. E. Grigoreva, I. G. Shevtsova, “Utochnenie neravenstva Katsa–Berri–Esseena”, Inform. i ee primen., 4:2 (2010), 75–82  mathnet
    3. Shevtsova, I.G., “On the accuracy of the normal approximation for sums of independent random variables”, Doklady Mathematics, 85:2 (2012), 274–278  crossref  mathscinet  mathscinet  zmath  isi  elib  elib
    4. Shevtsova I.G., “On the Accuracy of Approximation of the Complex Exponential by the First Terms of its Taylor Expansion and Applications to the Fourier-Stieltjes Transform”, Dokl. Math., 88:1 (2013), 409–412  crossref  mathscinet  zmath  isi  elib
  • Информатика и её применения
    Number of views:
    This page:179
    Full text:61
    References:33
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021