The Bulletin of Irkutsk State University. Series Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



The Bulletin of Irkutsk State University. Series Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


The Bulletin of Irkutsk State University. Series Mathematics, 2010, Volume 3, Issue 1, Pages 92–103 (Mi iigum148)  

This article is cited in 2 scientific papers (total in 2 papers)

Branching solutions of nonlinear differential equations of $n$-th order

N. A. Sidorova, D. N. Sidorovb

a Irkutsk State University, 1, K.Marks St., Irkutsk, 664003
b Energy Systems Institute SB RAS, 130, Lermontov Str., Irkutsk, 664033

Abstract: Analytical theory of branching solutions of nonlinear equations and theory of differential equations with singular point are employed for construction of solutions of differential equations of $n$-th order in the neighborhood of branching points.

Keywords: nonlinear differential equations, Newton diagram, Jordan forms, branching.

Full text: PDF file (369 kB)
References: PDF file   HTML file
UDC: 518.517

Citation: N. A. Sidorov, D. N. Sidorov, “Branching solutions of nonlinear differential equations of $n$-th order”, The Bulletin of Irkutsk State University. Series Mathematics, 3:1 (2010), 92–103

Citation in format AMSBIB
\Bibitem{SidSid10}
\by N.~A.~Sidorov, D.~N.~Sidorov
\paper Branching solutions of nonlinear differential equations of $n$-th order
\jour The Bulletin of Irkutsk State University. Series Mathematics
\yr 2010
\vol 3
\issue 1
\pages 92--103
\mathnet{http://mi.mathnet.ru/iigum148}


Linking options:
  • http://mi.mathnet.ru/eng/iigum148
  • http://mi.mathnet.ru/eng/iigum/v3/i1/p92

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Kosov, E. I. Semenov, A. V. Sinitsyn, “Integriruemost modeli magnitnoi izolyatsii i ee tochnye radialno-simmetrichnye resheniya”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 6:1 (2013), 45–56  mathnet
    2. A. A. Kosov, E. I. Semenov, “Mnogomernye tochnye resheniya odnogo klassa nelineinykh ellipticheskikh sistem”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 9 (2014), 49–60  mathnet
  • Number of views:
    This page:97
    Full text:70
    References:22

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021