
The Bulletin of Irkutsk State University. Series Mathematics, 2018, Volume 25, Pages 79–92
(Mi iigum347)




Robust controllability of nonstationary differentialalgebraic equations
P. S. Petrenko^{} ^{} Matrosov Institute for System Dynamics and Control Theory SB RAS,
Irkutsk, Russian Federation
Abstract:
We consider linear timevarying system of first order ordinary differential equations with identically degenerate matrix of the derivative of the unknown function. Such systems are called differentialalgebraic equations (DAE). The unsolvability measure with respect to the derivatives for some DAE is an integer that is called the index of the DAE. The analysis is carried out under the assumption of the existence of a structural form with separated differential and algebraic subsystems. This structural form is equivalent to the initial system in the sense of solution, and the operator which transformes the DAE into the structural form possesses the left inverse operator. The finding of the structural form is constructive and do not use a change of variables. In addition the problem of consistency of the initial data is solved automatically. The approach uses the concept of $r$derivative array equations, where $r$ is the unsolvability index of the DAE. The existence of a nonsingular minor of order $n(r + 1)$ in the matrix describing derivative array equations is a necessary and sufficient condition for the existence of this structural form ($n$ is the dimension of DAE system). We investigate robust controllability of nonstationary DAE with perturbations given by matrix norms (unstructured uncertainty), which are present in matrices with the unknown function and control function. The problem of the robust controllability is to find the conditions under which the perturbed system will remain completely or $R$controllable on some interval in the presence of this property of the initial DAE system. It is constructed a structural form for the perturbed DAE system and based on it's analysis sufficient conditions for robust complete and $R$controllability of the DAE of the indeces $1$ and $2$ are obtained.
Keywords:
differentialalgebraic equations, descriptor systems, perturbed systems, robust controllability.
DOI:
https://doi.org/10.26516/19977670.2018.25.79
Full text:
PDF file (376 kB)
References:
PDF file
HTML file
Bibliographic databases:
UDC:
517.922, 517.977.1, 517.926.4
MSC: 34A09, 93B05, 93B35 Received: 10.08.2018
Citation:
P. S. Petrenko, “Robust controllability of nonstationary differentialalgebraic equations”, The Bulletin of Irkutsk State University. Series Mathematics, 25 (2018), 79–92
Citation in format AMSBIB
\Bibitem{Pet18}
\by P.~S.~Petrenko
\paper Robust controllability of nonstationary differentialalgebraic equations
\jour The Bulletin of Irkutsk State University. Series Mathematics
\yr 2018
\vol 25
\pages 7992
\mathnet{http://mi.mathnet.ru/iigum347}
\crossref{https://doi.org/10.26516/19977670.2018.25.79}
Linking options:
http://mi.mathnet.ru/eng/iigum347 http://mi.mathnet.ru/eng/iigum/v25/p79
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles

Number of views: 
This page:  82  Full text:  18  References:  16 
