RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. IMI UdGU, 2015, Issue 1(45), Pages 3–36 (Mi iimi293)  

Stone spaces of some Boolean algebras

R. A. Golovastov

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia

Abstract: We study the Stone spaces of some Boolean algebras and establish relations between subsets of this spaces and Chech–Stone space $\beta\omega$, Cantor set, and other spaces. We consider three countable partially ordered sets and two type of Boolean algebras for each set. First, we consider space $S\mathfrak B_{1,1}$ constructered by M. Bell. We prove existence of subsets homeomorphic to $\beta\omega$ and convergent sequences in $S\mathfrak B_{1,1}$. For space $S\mathfrak B_{1,2}$, we prove that there are clopen subsets which is homeomorphic to $\beta\omega$ and remainder $S\mathfrak B_{1,2}^*$ consists of isolated points. We describe clopen subsets of $S\mathfrak B_{1,1}$ which are gomeomorphic to $\beta\omega$. We construct two examples: subset of $\mathfrak{N}_2$ which closure is non-open copy of $\beta\omega$ and subset of $\mathfrak{N}_2$ which closure is clopen and not gomeomorphic to $\beta\omega$. $S\mathfrak B_{1,2}$ is closure subset of $S\mathfrak B_{1,1}$ and $S\mathfrak B_{1,2}^*$ is nowhere dense in $S\mathfrak B_{1,1}^*$. Next, we consider the space $S\mathfrak B_{1,3}$. The subspace of free ultrafilters of $S\mathfrak B_{1,3}$ has the countable Suslin number, but is not separable. The points of the space are described as ultrafilters possessing basis of certain types. Next, we consider the spaces $S\mathfrak B_{2,1}$, $S\mathfrak B_{2,2}$, and $S\mathfrak B_{2,3}$. Boolean algebras for those Stone spaces have more simple structure. $S\mathfrak B_{2,3}$ is homeomorphic to Cantor set. The subset of free ultrafilters $S\mathfrak B_{2,3}^*$ is homeomorphic to the set of irrational numbers with natural topology. The subsets of free ultrafilters $S\mathfrak B_{1,3}^*$ and $S\mathfrak B_{1,3}^*$ are homeomorphic to Cantor set.

Keywords: compactification, Boolean algebra, Stone space, ultrafilter.

Full text: PDF file (434 kB)
References: PDF file   HTML file
UDC: 515.122.536
MSC: 54D35
Received: 30.03.2015

Citation: R. A. Golovastov, “Stone spaces of some Boolean algebras”, Izv. IMI UdGU, 2015, no. 1(45), 3–36

Citation in format AMSBIB
\Bibitem{Gol15}
\by R.~A.~Golovastov
\paper Stone spaces of some Boolean algebras
\jour Izv. IMI UdGU
\yr 2015
\issue 1(45)
\pages 3--36
\mathnet{http://mi.mathnet.ru/iimi293}
\elib{http://elibrary.ru/item.asp?id=23754964}


Linking options:
  • http://mi.mathnet.ru/eng/iimi293
  • http://mi.mathnet.ru/eng/iimi/y2015/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Института математики и информатики Удмуртского государственного университета
    Number of views:
    This page:127
    Full text:40
    References:24

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020