RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. IMI UdGU, 2015, Issue 2(46), Pages 45–52 (Mi iimi301)  

This article is cited in 1 scientific paper (total in 1 paper)

Recurrent and almost automorphic selections of multivalued mappings

L. I. Danilov

Physical Technical Institute of the Ural Branch of the Russian Academy of Sciences, ul. Kirova, 132, Izhevsk, 426001, Russia

Abstract: Let $(U,\rho )$ be a complete metric space and $({\mathrm {cl}}_{  b}  U,{\mathrm {dist}})$ be the metric space of nonempty closed bounded subsets of the space $U$ with the Hausdorff metric ${\mathrm {dist}}$. On the set $M({\mathbb R},U)$ of strongly measurable functions $f\colon{\mathbb R}\to U$ we introduce the metric $d^{(\rho )}$ such that the convergence in this metric is equivalent to the convergence in Lebesgue measure on every closed interval $[-l,l]$, $l>0$. The metric $d^{({\mathrm {dist}})}$ on the set $M({\mathbb R},{\mathrm {cl}}_{  b}  U)$ of strongly measurable multivalued mappings $f\colon{\mathbb R}\to {\mathrm {cl}}_{  b}  U$ (which are considered as functions with the range in ${\mathrm {cl}}_{  b}  U$) is defined by analogy with the metric $d^{(\rho )}.$ The spaces $M({\mathbb R},U)$ and $M({\mathbb R},{\mathrm {cl}}_{  b}  U)$ are the phase spaces of the dynamical systems of translations. For a multivalued Stepanov-like recurrent mapping $F\in {\mathcal R}({\mathbb R},{\mathrm {cl}}_{  b}  U)\subseteq M({\mathbb R},{\mathrm {cl}}_{  b}  U)$ and for any $x_0\in U$ and any nondecreasing function $\eta \colon[0,+\infty )\to [0,+\infty )$ for which $\eta (0)=0$ and $\eta (\xi )>0$ for $\xi >0$, it is proved that there exists a homomorphism of dynamical systems ${\mathcal F}:\overline {{\mathrm {orb}}  F}=\overline {\{ F(\cdot +t):t\in {\mathbb R}\} }\to M({\mathbb R},U)$ such that $({\mathcal F}F^{  \prime })(t)\in F^{  \prime }(t)$ and $\rho (({\mathcal F}F^{  \prime })(t),x_0)\leqslant \rho (x_0,F^{  \prime }(t))+\eta ( \rho (x_0,F^{  \prime }(t))) $ for all $F^{  \prime }\in \overline {{\mathrm {orb}}  F}$ and a.e. $t\in {\mathbb R}$. Furthermore, the functions ${\mathcal F}F^{  \prime }$ are Stepanov-like recurrent. If the multivalued mapping $F$ is Stepanov-like almost automorphic, then the function ${\mathcal F}F$ is Stepanov-like almost automorphic as well.

Keywords: recurrent function, almost automorphic function, selector, multivalued mapping.

Full text: PDF file (250 kB)
References: PDF file   HTML file
UDC: 517.518.6
MSC: 42A75, 54C65
Received: 10.09.2015

Citation: L. I. Danilov, “Recurrent and almost automorphic selections of multivalued mappings”, Izv. IMI UdGU, 2015, no. 2(46), 45–52

Citation in format AMSBIB
\Bibitem{Dan15}
\by L.~I.~Danilov
\paper Recurrent and almost automorphic selections of multivalued mappings
\jour Izv. IMI UdGU
\yr 2015
\issue 2(46)
\pages 45--52
\mathnet{http://mi.mathnet.ru/iimi301}
\elib{http://elibrary.ru/item.asp?id=25030021}


Linking options:
  • http://mi.mathnet.ru/eng/iimi301
  • http://mi.mathnet.ru/eng/iimi/y2015/i2/p45

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. I. Danilov, “Shift dynamical systems and measurable selectors of multivalued maps”, Sb. Math., 209:11 (2018), 1611–1643  mathnet  crossref  crossref  adsnasa  isi  elib
  • Известия Института математики и информатики Удмуртского государственного университета
    Number of views:
    This page:66
    Full text:24
    References:27

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019