RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. IMI UdGU, 2016, Issue 2(48), Pages 3–21 (Mi iimi330)  

On the spectrum of a periodic magnetic Dirac operator

L. I. Danilov

Physical Technical Institute, Ural Branch of the Russian Academy of Sciences, ul. Kirova, 132, Izhevsk, 426000, Russia

Abstract: We consider the periodic three-dimensional Dirac operator $\widehat {\mathcal D} +\widehat W=\sum \widehat \alpha _j(-i\frac {\partial }{\partial x_j}-A_j)+\widehat V_0+ \widehat V_1$. The vector potential $A\colon {\mathbb R}^3\to {\mathbb R}^3$ and the functions $\widehat V_s$, $s=0,1$, with values in the space of Hermitian $(4\times 4)$-matrices are periodic with a common period lattice $\Lambda \subset {\mathbb R}^3$. The functions $\widehat V_s$ are supposed to satisfy the commutation relations $\widehat V_s\widehat \alpha _j=(-1)^s\widehat \alpha _j\widehat V_s$, $j=1,2,3$, $s=0,1$. Let $K$ be the fundamental domain of the lattice $\Lambda $. We prove absolute continuity of the spectrum of the operator $\widehat {\mathcal D}+\widehat W$ provided that $A\in H^q_{\mathrm {loc}} ({\mathbb R}^3;{\mathbb R}^3)$, $q>1$, or $\sum \| A_N\| <+\infty $ where $A_N$ are the Fourier coefficients of the magnetic potential $A$, and the function $\widehat V=\widehat V_0+ \widehat V_1$ belongs to the space $L^3_w(K)$ and satisfies the estimate ${\mathrm {mes}}  \{ x\in K:\| \widehat V(x)\| >t\} \leqslant Ct^{-3}$ for all sufficiently large numbers $t>0$. The constant $C>0$ depends on the $A$ (if $A\equiv 0$ then $C$ is a universal constant), and $\mathrm {mes}$ is the Lebesgue measure. We can also add a function of the same form with several Coulomb singularities $|x-x_m|^{-1}\widehat w_m$ in neighborhoods of points $x_m\in K$, $m=1,\ldots ,m_0$, to the function $\widehat V=\widehat V_0+\widehat V_1$ provided that this function is continuous for $x\notin x_m+\Lambda $, $m=1,\ldots ,m_0$, and $\| \widehat w_m\| \leqslant C_1$ for all $m$. The constant $C_1>0$ also depends on the magnetic potential $A$ (and does not depend on the $m_0$).

Keywords: Dirac operator, absolute continuity of the spectrum, periodic potential.

Full text: PDF file (391 kB)
References: PDF file   HTML file
UDC: 517.958, 517.984.5
MSC: 35P05
Received: 01.09.2016

Citation: L. I. Danilov, “On the spectrum of a periodic magnetic Dirac operator”, Izv. IMI UdGU, 2016, no. 2(48), 3–21

Citation in format AMSBIB
\Bibitem{Dan16}
\by L.~I.~Danilov
\paper On the spectrum of a periodic magnetic Dirac operator
\jour Izv. IMI UdGU
\yr 2016
\issue 2(48)
\pages 3--21
\mathnet{http://mi.mathnet.ru/iimi330}
\elib{https://elibrary.ru/item.asp?id=27507176}


Linking options:
  • http://mi.mathnet.ru/eng/iimi330
  • http://mi.mathnet.ru/eng/iimi/y2016/i2/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Института математики и информатики Удмуртского государственного университета Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
    Number of views:
    This page:91
    Full text:19
    References:23

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020