RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. IMI UdGU, 2018, Volume 51, Pages 42–51 (Mi iimi353)  

This article is cited in 1 scientific paper (total in 1 paper)

Radial basis function for parallel mesh-to-mesh interpolation in solving fluid-structure interaction problem

S. P. Kopysovab, I. M. Kuz'mina, N. S. Nedozhogina, A. K. Novikova, L. E. Tonkova

a Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, ul. T. Baramzinoi, 34, Izhevsk, 426067, Russia
b Department of Computational Mechanics, Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia

Abstract: In strongly coupled fluid-structure interaction simulations, the fluid dynamics and solid dynamics problems are solved independently on their own meshes. Therefore, it becomes necessary to interpolate the physical properties (pressure, displacement) across two meshes. In the present paper, we propose to accelerate the interpolation process by the method of radial basis functions using the matrix-free solution of the system of equations on a GPU. Also, we reduce the number of equations in the system by using an adaptive algorithm for choosing interpolation points. The adaptive algorithm allows to reduce the number of equations of the interpolation system while preserving the quality of the interpolation. Estimation of the effectiveness of reducing the computational costs based on the matrix-free approach to solving the system, as well as evaluating the quality of interpolation, was carried out using the simulation of the problem of modeling the flow of fluid with a supersonic deformable nozzle.

Keywords: parallel computing, hybrid HPC platforms, fluid-structure interaction, radial basis functions, layer-by-layer partitioning.

Funding Agency Grant Number
Russian Foundation for Basic Research 16-01-00129_а
17-01-00402_а
This work was supported by RFBR (projects no. 16–01–00129, no. 17–01–00402).


DOI: https://doi.org/10.20537/2226-3594-2018-51-02

Full text: PDF file (1244 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 519.63, 530.145.6
MSC: 65M60, 35Q74, 65Y05
Received: 12.05.2018
Language:

Citation: S. P. Kopysov, I. M. Kuz'min, N. S. Nedozhogin, A. K. Novikov, L. E. Tonkov, “Radial basis function for parallel mesh-to-mesh interpolation in solving fluid-structure interaction problem”, Izv. IMI UdGU, 51 (2018), 42–51

Citation in format AMSBIB
\Bibitem{KopKuzNed18}
\by S.~P.~Kopysov, I.~M.~Kuz'min, N.~S.~Nedozhogin, A.~K.~Novikov, L.~E.~Tonkov
\paper Radial basis function for parallel mesh-to-mesh interpolation in solving fluid-structure interaction problem
\jour Izv. IMI UdGU
\yr 2018
\vol 51
\pages 42--51
\mathnet{http://mi.mathnet.ru/iimi353}
\crossref{https://doi.org/10.20537/2226-3594-2018-51-02}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000467729600002}
\elib{http://elibrary.ru/item.asp?id=35269038}


Linking options:
  • http://mi.mathnet.ru/eng/iimi353
  • http://mi.mathnet.ru/eng/iimi/v51/p42

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. R. Kadyrov, S. P. Kopysov, A. K. Novikov, “Razdelenie triangulirovannoi mnogosvyaznoi oblasti na podoblasti bez vetvleniya vnutrennikh granits”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 160, no. 3, Izd-vo Kazanskogo un-ta, Kazan, 2018, 544–560  mathnet
  • Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
    Number of views:
    This page:105
    Full text:47
    References:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020