RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Изв. ИМИ УдГУ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Изв. ИМИ УдГУ, 2018, том 52, страницы 47–58 (Mi iimi360)  

Критерий равномерной глобальной достижимости линейных систем

А. А. Козлов

Полоцкий государственный университет, 211440, Республика Беларусь, г. Новополоцк, ул. Блохина, 29

Аннотация: В статье рассматривается линейная нестационарная управляемая система с локально интегрируемыми и интегрально ограниченными коэффициентами
\begin{equation} \dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0. \tag{1} \end{equation}
Управление в системе $(1)$ строится по принципу линейной обратной связи $u=U(t)x$ с измеримой и ограниченной матричной функцией $U(t)$, $t\geqslant 0$. Для замкнутой системы
\begin{equation} \dot x =(A(t)+B(t)U(t))x, \quad x\in\mathbb{R}^n, \quad t\geqslant 0, \tag{2} \end{equation}
устанавливается критерий ее равномерной глобальной достижимости. Это свойство означает существование такого $T>0$, что для всяких положительных чисел $\alpha$ и $\beta$ найдется $d=d(\alpha,\beta)>0$, обеспечивающее при всяком $t_0\geqslant 0$ и произвольной $(n\times n)$-матрице $H$, $\|H\|\leqslant\alpha$, $\det H\geqslant\beta$, возможность построения измеримого на $[t_0,t_0+T]$ матричного управления $U(\cdot)$, для которого справедлива оценка $\sup\limits_{t\in [t_0,t_0+T]}\|U(t)\|\leqslant d$ и равенство $X_U(t_0+T,t_0)=H$, где $X_U$ — матрица Коши системы (2). Доказательство критерия основано на полученной в работе теореме о представлении всякой $(n\times n)$-матрицы с положительным определителем в виде произведения девяти верхне- и нижнетреугольных матриц с положительными диагональными элементами и дополнительными условиями на норму и определитель этих матриц.

Ключевые слова: линейная управляемая система, матрица Коши, равномерная глобальная достижимость.

Финансовая поддержка Номер гранта
Национальная академия наук Беларуси, Министерство образования Республики Беларусь подпрограмма 1, задание 1.2.01
Работа выполнена в рамках Государственной программы научных исследований Республики Беларусь <<Конвергенция–2020>> (подпрограмма 1, задание 1.2.01).


DOI: https://doi.org/10.20537/2226-3594-2018-52-04

Полный текст: PDF файл (240 kB)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.926, 517.977
MSC: 34D08, 34H05, 93C15
Поступила в редакцию: 01.07.2018

Образец цитирования: А. А. Козлов, “Критерий равномерной глобальной достижимости линейных систем”, Изв. ИМИ УдГУ, 52 (2018), 47–58

Цитирование в формате AMSBIB
\RBibitem{Koz18}
\by А.~А.~Козлов
\paper Критерий равномерной глобальной достижимости линейных систем
\jour Изв. ИМИ УдГУ
\yr 2018
\vol 52
\pages 47--58
\mathnet{http://mi.mathnet.ru/iimi360}
\crossref{https://doi.org/10.20537/2226-3594-2018-52-04}
\elib{http://elibrary.ru/item.asp?id=36508455}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/iimi360
  • http://mi.mathnet.ru/rus/iimi/v52/p47

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Института математики и информатики Удмуртского государственного университета
    Просмотров:
    Эта страница:63
    Полный текст:51
    Литература:10
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020