RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. IMI UdGU, 2019, Volume 53, Pages 48–60 (Mi iimi370)  

The dynamical discrepancy method in problems of reconstructing unknown characteristics of a second-order system

M. S. Blizorukovaab

a N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620990, Russia
b Ural Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russia

Abstract: This paper considers two problems of dynamical reconstruction of unknown characteristics of a system of nonlinear equations describing the process of innovation diffusion through inaccurate measurements of phase states. A dynamical variant for solving these problems is designed. The system is assumed to operate on a given finite time interval. The evolution of the system's phase state, i.e., the solution of the system, is determined by an unknown input. A precise reconstruction of the real input (acting on the system) is, generally speaking, impossible due to inaccurate measurements. Therefore, some approximation to this input is constructed which provides an arbitrary smallness to the real input if the measurement errors and the step of incoming information are sufficiently small. Based on the dynamical version of the discrepancy method, two algorithms for solving the problems in question are specified. One of them is oriented to the case of measuring all coordinates of the phase vector, and the other, to the case of incomplete measurements. The algorithms suggested are stable with respect to informational noises and computational errors. Actually, they are special regularizing algorithms from the theory of dynamic inverse problems.

Keywords: dynamical reconstruction, part of coordinates, nonlinear differential equations.

DOI: https://doi.org/10.20537/2226-3594-2019-53-05

Full text: PDF file (154 kB)
References: PDF file   HTML file

UDC: 517.977
MSC: 37N40, 93B52
Received: 10.02.2019

Citation: M. S. Blizorukova, “The dynamical discrepancy method in problems of reconstructing unknown characteristics of a second-order system”, Izv. IMI UdGU, 53 (2019), 48–60

Citation in format AMSBIB
\Bibitem{Bli19}
\by M.~S.~Blizorukova
\paper The dynamical discrepancy method in problems of reconstructing unknown characteristics of a second-order system
\jour Izv. IMI UdGU
\yr 2019
\vol 53
\pages 48--60
\mathnet{http://mi.mathnet.ru/iimi370}
\crossref{https://doi.org/10.20537/2226-3594-2019-53-05}
\elib{http://elibrary.ru/item.asp?id=38503198}


Linking options:
  • http://mi.mathnet.ru/eng/iimi370
  • http://mi.mathnet.ru/eng/iimi/v53/p48

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
    Number of views:
    This page:20
    Full text:8
    References:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019