RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. IMI UdGU, 2012, Issue 1(39), Pages 103–104 (Mi iimi49)  

Numerical methods for solving the evolutionary equations with delay

V. G. Pimenov

Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: The grid-based numerical algorithms for solving the hyperbolic equations with the effect of heredity are considered. The stability conditions are received and convergence orders are defined.

Keywords: equations in partial derivatives, delay, grid methods, stability, convergence order.

Full text: PDF file (100 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 519.63
MSC: 65M12, 65P40, 34K28
Received: 15.02.2012

Citation: V. G. Pimenov, “Numerical methods for solving the evolutionary equations with delay”, Izv. IMI UdGU, 2012, no. 1(39), 103–104

Citation in format AMSBIB
\Bibitem{Pim12}
\by V.~G.~Pimenov
\paper Numerical methods for solving the evolutionary equations with delay
\jour Izv. IMI UdGU
\yr 2012
\issue 1(39)
\pages 103--104
\mathnet{http://mi.mathnet.ru/iimi49}


Linking options:
  • http://mi.mathnet.ru/eng/iimi49
  • http://mi.mathnet.ru/eng/iimi/y2012/i1/p103

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Института математики и информатики Удмуртского государственного университета
    Number of views:
    This page:253
    Full text:193
    References:37

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019