RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. IMI UdGU, 2006, Issue 1(35), Pages 83–88 (Mi iimi81)  

Scattering problem for the one-dimensional discrete Schrödinger operator with a decreasing potential

L. E. Morozova

Udmurt State University, Izhevsk

Abstract: We consider the one-dimensional discrete Schrödinger operator $H_0+V$ acting on the space $l^2(\mathbb{Z}),$ where $V$ is a decreasing potential. The theorem of existence and uniqueness of the corresponding Lippmann–Schwinger equation is proved. We study the asymptotics behaviour of solutions of this equation.

Full text: PDF file (173 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 517.958:530.145.6

Citation: L. E. Morozova, “Scattering problem for the one-dimensional discrete Schrödinger operator with a decreasing potential”, Izv. IMI UdGU, 2006, no. 1(35), 83–88

Citation in format AMSBIB
\Bibitem{Mor06}
\by L.~E.~Morozova
\paper Scattering problem for the one-dimensional discrete Schr\"odinger operator with a decreasing potential
\jour Izv. IMI UdGU
\yr 2006
\issue 1(35)
\pages 83--88
\mathnet{http://mi.mathnet.ru/iimi81}


Linking options:
  • http://mi.mathnet.ru/eng/iimi81
  • http://mi.mathnet.ru/eng/iimi/y2006/i1/p83

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Института математики и информатики Удмуртского государственного университета
    Number of views:
    This page:77
    Full text:46
    References:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019