RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. RAN. Ser. Mat., 1995, Volume 59, Issue 2, Pages 3–46 (Mi izv10)  

A characterization of the free actions of zero-dimensional compact groups on $k$-dimensional Menger compacta

S. M. Ageev

A. S. Pushkin Brest State University

Abstract: This paper contains a theorem characterizing free actions of a zerodimensional compact group $G$ on a $k$-dimensional Menger compactum $\mu^k$: two free actions $\alpha\colon G\times\mu^k\to\mu^k$ and $\alpha_1\colon G\times\mu^k\to\mu^k$ are equivalent provided that the dimensions of the orbit spaces are equal to $k$ and the actions are strongly universal with respect to the class of free compacta $Y$ with $\dim(Y/G)\leqslant k$. This theorem, as well as other results of the paper, suggest that, in the category of compact spaces equipped with free actions of groups of the above type, there are distinguished objects (referred to in what follows as free Menger compacta $\mu^k_f$), with properties analogous to those of the classical Menger compacta $\mu^k$.

Full text: PDF file (5181 kB)
References: PDF file   HTML file

English version:
Izvestiya: Mathematics, 1995, 59:2, 229–270

Bibliographic databases:

MSC: 57Q91, 57S10
Received: 02.02.1994

Citation: S. M. Ageev, “A characterization of the free actions of zero-dimensional compact groups on $k$-dimensional Menger compacta”, Izv. RAN. Ser. Mat., 59:2 (1995), 3–46; Izv. Math., 59:2 (1995), 229–270

Citation in format AMSBIB
\Bibitem{Age95}
\by S.~M.~Ageev
\paper A characterization of the free actions of zero-dimensional compact groups on $k$-dimensional Menger compacta
\jour Izv. RAN. Ser. Mat.
\yr 1995
\vol 59
\issue 2
\pages 3--46
\mathnet{http://mi.mathnet.ru/izv10}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1337157}
\zmath{https://zbmath.org/?q=an:0894.57017}
\transl
\jour Izv. Math.
\yr 1995
\vol 59
\issue 2
\pages 229--270
\crossref{https://doi.org/10.1070/IM1995v059n02ABEH000010}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1995RZ88800001}


Linking options:
  • http://mi.mathnet.ru/eng/izv10
  • http://mi.mathnet.ru/eng/izv/v59/i2/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:240
    Full text:74
    References:19
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019