|
This article is cited in 35 scientific papers (total in 35 papers)
Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution
A. V. Bolsinov
Abstract:
This paper presents a method for checking completeness of families of functions which are in involution with respect to compatible Poisson brackets. Several examples of compatible Poisson brackets on duals of Lie algebras are considered, as well as the associated involutive function families and Hamiltonian systems. The transitions of Liouville tori for some nonintegrable Hamiltonian systems, notably the equations of motion for a higher dimensional rigid body, are described.
Full text:
PDF file (1596 kB)
References:
PDF file
HTML file
English version:
Mathematics of the USSR-Izvestiya, 1992, 38:1, 69–90
Bibliographic databases:
UDC:
513.944
MSC: 58F07 Received: 13.07.1989
Citation:
A. V. Bolsinov, “Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution”, Izv. Akad. Nauk SSSR Ser. Mat., 55:1 (1991), 68–92; Math. USSR-Izv., 38:1 (1992), 69–90
Citation in format AMSBIB
\Bibitem{Bol91}
\by A.~V.~Bolsinov
\paper Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1991
\vol 55
\issue 1
\pages 68--92
\mathnet{http://mi.mathnet.ru/izv1026}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1130028}
\zmath{https://zbmath.org/?q=an:0744.58030|0731.58026}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1992IzMat..38...69B}
\transl
\jour Math. USSR-Izv.
\yr 1992
\vol 38
\issue 1
\pages 69--90
\crossref{https://doi.org/10.1070/IM1992v038n01ABEH002187}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1992HG30700003}
Linking options:
http://mi.mathnet.ru/eng/izv1026 http://mi.mathnet.ru/eng/izv/v55/i1/p68
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. V. Bolsinov, B. Jovanović, “Integrable geodesic flows on homogeneous spaces”, Sb. Math., 192:7 (2001), 951–968
-
I. Z. Golubchik, V. V. Sokolov, “Compatible Lie Brackets and Integrable Equations of the Principal Chiral Model Type”, Funct. Anal. Appl., 36:3 (2002), 172–181
-
A. V. Bolsinov, A. V. Borisov, “Compatible Poisson Brackets on Lie Algebras”, Math. Notes, 72:1 (2002), 10–30
-
A. V. Tsiganov, “On isomorphism of integrable cases of the Euler equations on the bi-hamiltonian manifolds $e(3)$ and $so(4)$”, J. Math. Sci. (N. Y.), 136:1 (2006), 3641–3647
-
Bolsinov A.V., “Integrable geodesic flows on Riemannian manifolds: Construction and obstructions”, Proceedings of the Workshop on Contemporary Geometry and Related Topics, 2004, 57–103
-
Jeffery Praught, Roman G. Smirnov, “Andrew Lenard: A Mystery Unraveled”, SIGMA, 1 (2005), 005, 7 pp.
-
Alexey V Bolsinov, Božidar Jovanović, “Magnetic geodesic flows on coadjoint orbits”, J Phys A Math Gen, 39:16 (2006), L247
-
Andriy Panasyuk, “Algebraic Nijenhuis operators and Kronecker Poisson pencils”, Differential Geometry and its Applications, 24:5 (2006), 482
-
A. V. Tsiganov, “Compatible Lie–Poisson brackets on the Lie algebras $e(3)$ and $so(4)$”, Theoret. and Math. Phys., 151:1 (2007), 459–473
-
Gregorio Falqui, “A Note on the Rotationally Symmetric $\mathrm{SO}(4)$ Euler Rigid Body”, SIGMA, 3 (2007), 032, 13 pp.
-
Anthony Joseph, “On semi-invariants and index for biparabolic (seaweed) algebras, II”, Journal of Algebra, 312:1 (2007), 158
-
A. V. Bolsinov, K. M. Zuev, “A Formal Frobenius Theorem and Argument Shift”, Math. Notes, 86:1 (2009), 10–18
-
Andriy Panasyuk, “Bi-Hamiltonian structures with symmetries, Lie pencils and integrable systems”, J Phys A Math Theor, 42:16 (2009), 165205
-
Anthony M. Bloch, Vasile Brînzănescu, Arieh Iserles, Jerrold E. Marsden, Tudor S. Ratiu, “A Class of Integrable Flows on the Space of Symmetric Matrices”, Comm Math Phys, 2009
-
A. V. Belyaev, “Asymptotic behaviour of singular points of solutions of the problem of heavy $n$-dimensional body motion in the Lagrange case”, Sb. Math., 202:11 (2011), 1617–1635
-
Math. Notes, 90:5 (2011), 666–677
-
Vorontsov A.S., “Kronekerovy indeksy algebry li i otsenka stepenei invariantov”, Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika, 2011, no. 1, 26–30
-
Yuri N Fedorov, Božidar Jovanović, “Three natural mechanical systems on Stiefel varieties”, J. Phys. A: Math. Theor, 45:16 (2012), 165204
-
Anton Izosimov, “Stability in bihamiltonian systems and multidimensional rigid body”, Journal of Geometry and Physics, 2012
-
Anton Izosimov, “Curvature of Poisson pencils in dimension three”, Differential Geometry and its Applications, 31:5 (2013), 557
-
A. Yu. Konyaev, “Classification of Lie algebras with generic orbits of dimension 2 in the coadjoint representation”, Sb. Math., 205:1 (2014), 45–62
-
Dianlou Du, Xiao Yang, “An alternative approach to solve the mixed AKNS equations”, Journal of Mathematical Analysis and Applications, 2014
-
Alexey Bolsinov, Anton Izosimov, “Singularities of Bi-Hamiltonian Systems”, Commun. Math. Phys, 2014
-
Anton Izosimov, “Stability of relative equilibria of multidimensional rigid body”, Nonlinearity, 27:6 (2014), 1419
-
Pumei Zhang, “Algebraic Properties of Compatible Poisson Brackets”, Regul. Chaotic Dyn., 19:3 (2014), 267–288
-
Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Note on free symmetric rigid body motion”, Regul. Chaot. Dyn, 20:3 (2015), 293
-
B. Gajić, V. Dragović, B. Jovanović, “On the completeness of the Manakov integrals”, J. Math. Sci., 223:6 (2017), 675–685
-
Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Note on Free Symmetric Rigid Body Motion”, Regul. Chaotic Dyn., 20:3 (2015), 293–308
-
I. K. Kozlov, “Invariant foliations of nondegenerate bi-Hamiltonian structures”, J. Math. Sci., 225:4 (2017), 596–610
-
M. A. Tuzhilin, “Bihamilon structure and singularities of momentum mapping for Lagrange top”, Moscow University Mathematics Bulletin, 70:2 (2015), 74–78
-
O. L. Kurnyavko, I. V. Shirokov, “Construction of invariants of the coadjoint representation of Lie groups using linear algebra methods”, Theoret. and Math. Phys., 188:1 (2016), 965–979
-
Daniel J. F. Fox, “Symmetries of the Space of Linear Symplectic Connections”, SIGMA, 13 (2017), 002, 30 pp.
-
Bolsinov A.V., Izosimov A.M., Tsonev D.M., “Finite-dimensional integrable systems: A collection of research problems”, J. Geom. Phys., 115 (2017), 2–15
-
Bolsinov A., Matveev V.S., Miranda E., Tabachnikov S., “Open Problems, Questions and Challenges in Finite-Dimensional Integrable Systems”, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 376:2131 (2018), 20170430
-
V. V. Kozlov, “Tensor invariants and integration of differential equations”, Russian Math. Surveys, 74:1 (2019), 111–140
|
Number of views: |
This page: | 651 | Full text: | 226 | References: | 50 | First page: | 3 |
|