RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izv. Akad. Nauk SSSR Ser. Mat., 1990, Volume 54, Issue 5, Pages 1021–1047 (Mi izv1061)  

This article is cited in 2 scientific papers (total in 2 papers)

Change of Jordan structure of $G$-selfadjoint operators and selfadjoinl operator-functions under small perturbatios

V. R. Ol'shevskii


Abstract: The author considers the problem of the change of length of Jordan chains when passing from $G_0$-selfadjoint operator $A_0$ to $G$-selfadjoint operator $A$, provided $\|A-A_0\|+\|G-G_0\|$ is small enough. The role played by the so-called sign characteristics is clarified. The results will carry over to the case of small perturbations of holomorphic selfadjoint operator-valued functions.

Full text: PDF file (1711 kB)
References: PDF file   HTML file

English version:
Mathematics of the USSR-Izvestiya, 1991, 37:2, 371–395

Bibliographic databases:

UDC: 517.98
MSC: 47B25, 47A56, 47A55
Received: 13.10.1988

Citation: V. R. Ol'shevskii, “Change of Jordan structure of $G$-selfadjoint operators and selfadjoinl operator-functions under small perturbatios”, Izv. Akad. Nauk SSSR Ser. Mat., 54:5 (1990), 1021–1047; Math. USSR-Izv., 37:2 (1991), 371–395

Citation in format AMSBIB
\Bibitem{Ols90}
\by V.~R.~Ol'shevskii
\paper Change of Jordan structure of $G$-selfadjoint operators and selfadjoinl operator-functions under small perturbatios
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1990
\vol 54
\issue 5
\pages 1021--1047
\mathnet{http://mi.mathnet.ru/izv1061}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1086084}
\zmath{https://zbmath.org/?q=an:0733.47036|0718.47019}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1991IzMat..37..371O}
\transl
\jour Math. USSR-Izv.
\yr 1991
\vol 37
\issue 2
\pages 371--395
\crossref{https://doi.org/10.1070/IM1991v037n02ABEH002068}


Linking options:
  • http://mi.mathnet.ru/eng/izv1061
  • http://mi.mathnet.ru/eng/izv/v54/i5/p1021

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. F. Schagen, “Cyclic dimensions, controllability subspaces and Gohberg-Kaashoek numbers”, Integr equ oper theory, 22:2 (1995), 248  crossref  mathscinet  zmath  isi
    2. Vladimir Matsaev, Vadim Olshevsky, “Cyclic dimensions, kernel multiplicities, and Gohberg-Kaashoek numbers”, Linear Algebra and its Applications, 239 (1996), 161  crossref
  • Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Number of views:
    This page:187
    Full text:62
    References:41
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019